Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Environ Res ; 259: 119576, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996958

RESUMO

The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 819-824, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926973

RESUMO

OBJECTIVE: To analyze the DTA (DNMT3A, TET2, ASXL1) mutations in patients with myeloproliferative neoplasms (MPN), and preliminarily explore their correlation with thromboembolism. METHODS: Clinical characteristics of 62 patients diagnosed de novo MPN at Central Hospital Affiliated to Shandong First Medical University from September 2016 to September 2022 were retrospectively analyzed. Next-generation sequencing was used to detect 35 MPN-related genes, and the DTA mutations in MPN patients and their relationship with thromboembolic events were analyzed. RESULTS: 75.8% (47/62) of the patients presented pathogenic non-driver mutations, and the mean number of pathogenic non-driver mutations per patient was 1.08. Among them, the most frequently mutated non-driver genes were TET2 (38.7%, 24/62), DNMT3A (9.7%, 6/62) and ASXL1 (6.5%, 4/62). The presence of DTA gene mutations was 50% (31/62) in the total MPN patients, and mainly accompanied by driver mutations. The mutation rate of DTA in patients aged ≥60 years was significantly higher than that in patients <60 years old (P =0.039). The incidence of thromboembolism in patients with DTA mutation was 58.1% (18/31), which was significantly higher than that in patients without DTA mutation (19.4%, 6/31) (P =0.002). The TET2 gene mutation rate in MPN patients with thromboembolism was 66.7% (16/24), which was significantly higher than that in patients without thromboembolism (21.1%, 8/38) (P =0.00). CONCLUSION: Patients with MPN have a higher incidence of DTA mutations, which are mainly accompanied by driver gene mutations. The incidence of thromboembolism in MPN patients with DTA mutations is higher than that in patients without DTA mutations. Especially, the elderly (≥60 years) essential thrombocythemia(ET) and polycythemia vera(PV) patients with TET2 mutation should be vigilant for thromboembolic events.


Assuntos
DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Mutação , Transtornos Mieloproliferativos , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Tromboembolia , Humanos , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Tromboembolia/genética , Estudos Retrospectivos , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , DNA (Citosina-5-)-Metiltransferases/genética , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga Escala
3.
Sci Rep ; 14(1): 13181, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849364

RESUMO

The biomechanical aspects of adjacent segment degeneration after Adult Idiopathic Scoliosis (AdIS) corrective surgery involving postoperative changes in motion and stress of adjacent segments have yet to be investigated. The objective of this study was to evaluate the biomechanical effects of corrective surgery on adjacent segments in adult idiopathic scoliosis by finite element analysis. Based on computed tomography data of the consecutive spine from T1-S1 of a 28-year-old male patient with adult idiopathic scoliosis, a three-dimensional finite element model was established to simulate the biomechanics. Two posterior long-segment fixation and fusion operations were designed: Strategy A, pedicle screws implanted in all segments of both sides, and Strategy B, alternate screws instrumentation on both sides. The range of motion (ROM), Maximum von Mises stress value of intervertebral disc (IVD), and Maximum von Mises stress of the facet joint (FJ) at the fixation adjacent segment were calculated and compared with data of the preoperative AdIS model. Corrective surgery decreased the IVD on the adjacent segments, increased the FJ on the adjacent segments, and decreased the ROM of the adjacent segments. A greater decrease of Maximum von Mises stress was observed on the distal adjacent segment compared with the proximal adjacent segment. The decrease of Maximum von Mises stress and increment of Maximum von Mises stress on adjacent FJ in strategy B was greater than that in strategy A. Under the six operation modes, the change of the Maximum von Mises stress on the adjacent IVD and FJ was significant. The decrease in ROM in the proximal adjacent segment was greater than that of the distal adjacent segment, and the decrease of ROM in strategy A was greater than that in strategy B. This study clarified the biomechanical characteristics of adjacent segments after AdIS corrective surgery, and further biomechanical analysis of two different posterior pedicle screw placement schemes by finite element method. Our study provides a theoretical basis for the pathogenesis, prevention, and treatment of adjacent segment degeneration after corrective surgery for AdIS.


Assuntos
Análise de Elementos Finitos , Amplitude de Movimento Articular , Escoliose , Fusão Vertebral , Humanos , Escoliose/cirurgia , Escoliose/fisiopatologia , Adulto , Masculino , Fenômenos Biomecânicos , Fusão Vertebral/métodos , Parafusos Pediculares , Tomografia Computadorizada por Raios X , Estresse Mecânico , Disco Intervertebral/cirurgia , Disco Intervertebral/fisiopatologia , Disco Intervertebral/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Vértebras Torácicas/fisiopatologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38733463

RESUMO

Neuroinflammation is considered an important factor that leads to cognitive impairment. Microglia play a crucial role in neuroinflammation, which leads to cognitive impairment. This study aimed at determining whether temporin-GHaR peptide (GHaR) could improve cognitive function and at uncovering the underlying mechanisms. We found that GHaR treatment alleviated LPS-induced cognitive impairment and inhibited activation of microglia in LPS-induced mice. Furthermore, GHaR inhibited activation of endoplasmic reticulum stress (ERS) and the NF-κB signaling pathway in LPS-induced mice. In vitro, GHaR inhibited M1 polarization of BV2 cells and suppressed TNF-α and IL-6 secretion. Additionally, GHaR neuronal cell viability and apoptosis were induced by LPS-activated microglia-conditioned medium. Moreover, in LPS-induced BV2 cells, GHaR inhibited activation of ERS and the NF-κB signaling pathway. In summary, GHaR improved LPS-induced cognitive and attenuated inflammatory responses via microglial activation reversal. In conclusion, the neuroprotective effects of GHaR were mediated via the ERS signaling pathway.

5.
Int J Biol Macromol ; 270(Pt 2): 132338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763237

RESUMO

Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.


Assuntos
Osmose , Biopolímeros/química , Alginatos/química , Soroalbumina Bovina/química , Permeabilidade , Pressão Osmótica , Água/química , Bovinos , Membranas Artificiais , Animais , Purificação da Água/métodos
6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38216542

RESUMO

The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (ß = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (ß = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.


Assuntos
Análise da Randomização Mendeliana , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Encéfalo , Nonoxinol , Compostos Radiofarmacêuticos , Estudo de Associação Genômica Ampla
7.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216883

RESUMO

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Assuntos
Neoplasias Colorretais , Escherichia coli , Camundongos , Animais , Humanos , Escherichia coli/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Guanosina Trifosfato , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856192

RESUMO

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Ceras/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(8): 128, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37664925

RESUMO

BACKGROUND: Breast cancer is the commonest global malignancy and the primary cause of carcinoma death. MCM6 is vital to carcinogenesis, but the pathogenesis of MCM6 remains unclear. METHODS: MCM6 expression in patients with breast cancer was examined through The Cancer Genome Atlas (TCGA) database, immunohistochemistry, Quantitative Real-Time PCR (qRT‒PCR) and Western blotting. The prognostic factors were assessed by the Kaplan‒Meier method and Cox regression. On the basis of the key factors selected by multivariable Cox regression analysis, a nomogram risk prediction model was adopted for clinical risk assessment. The TCGA database was utilized to determine how MCM6 is correlated with chemotherapy sensitivity, immune checkpoint-related genes (ICGs), tumor-infiltrating immune cells, along with tumor mutation burden (TMB) and methylation. The impact of MCM6 on carcinoma cells was investigated in terms of proliferation, cell cycle as well as migrating and invasive behavior through CCK assays, flow cytometry, wound healing assays, Transwell assays and xenotransplantation experiments. RESULTS: MCM6 expression was upregulated, which is closely associated with the size of the tumor (p = 0.001) and lymph node metastasis (p = 0.012) in patients with breast cancer. Multivariate analysis revealed MCM6 to be an independent risk factor for prognosis in patients with breast carcinoma. The nomograph prediction model included MCM6, age, ER, M and N stage, which displayed good discrimination with a C index of 0.817 and good calibration. Overexpression of MCM6 correlated with chemotherapy sensitivity, immune checkpoint-related genes (ICGs), tumor-infiltrating immune cells, tumor mutation burden (TMB), and methylation. Silencing MCM6 significantly inhibited proliferation, prolonged the G1 phase of the cell cycle, and restrained the proliferation, migration and invasive behavior of cancerous cells and inhibited tumor growth in vivo. CONCLUSIONS: Our research shows that MCM6 is highly expressed in breast cancer and can be used as an independent prognostic factor, which is expected to become a new target for the treatment of breast cancer in the future.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Ciclo Celular , Biomarcadores , Componente 6 do Complexo de Manutenção de Minicromossomo
10.
Membranes (Basel) ; 13(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755200

RESUMO

Efficient separation techniques play an important role in the process of resource recovery, and these techniques include physical, chemical, physicochemical, and/or biological methods that are selected for their low cost and low energy consumption and for being free of secondary pollution [...].

11.
Membranes (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837710

RESUMO

Calcium alginate (Ca-Alg) is a novel target product for recovering alginate from aerobic granular sludge. A novel Ca-Alg production method was proposed herein where Ca-Alg was formed in a sodium alginate (SA) feed solution (FS) and concentrated via forward osmosis (FO) with Ca2+ reverse osmosis using a draw solution of CaCl2. An abnormal reverse solute diffusion was observed, with the average reverse solute flux (RSF) decreasing with increasing CaCl2 concentrations, while the average RSF increased with increasing alginate concentrations. The RSF of Ca2+ in FS decreased continuously as the FO progressed, using 1.0 g/L SA as the FS, while it increased initially and later decreased using 2.0 and 3.0 g/L SA as the FS. These results were attributed to the Ca-Alg recovery production (CARP) formed on the FO membrane surface on the feed side, and the percentage of Ca2+ in CARP to total Ca2+ reverse osmosis reached 36.28%. Scanning electron microscopy and energy dispersive spectroscopy also verified CARP existence and its Ca2+ content. The thin film composite FO membrane with a supporting polysulfone electrospinning nanofiber membrane layer showed high water flux and RSF of Ca2+, which was proposed as a novel FO membrane for Ca-Alg production via the FO process with Ca2+ reverse diffusion. Four mechanisms including molecular sieve role, electrification of colloids, osmotic pressure of ions in CARP, and FO membrane structure were proposed to control the Ca-Alg production. Thus, the results provide further insights into Ca-Alg production via FO along with Ca2+ reverse osmosis.

12.
Heliyon ; 9(2): e13436, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820047

RESUMO

Background and aims: The destruction of endoplasmic reticulum (ER) homeostasis leads to heart failure (HF), which further aggravates ER stress. Limited data are available on the levels of ER stress markers in HF patients in clinical practice. This study aimed to determine the clinical significance of the ER stress markers, glucose-regulated protein 78 (GRP78), Caspase-3, and C/EBP homologous protein (CHOP), in predicting HF and its severity. Materials and methods: A total of 62 patients with HF and 44 healthy controls were enrolled in the study, and all participants were followed-up for 2 years. Results: Serum GRP78, Caspase-3, and CHOP levels were significantly higher in patients with HF than those in healthy controls. The level of GRP78 increased with the severity of HF. GRP78 levels were negatively correlated with left ventricular ejection fraction, and positively correlated with N-terminal B-type natriuretic peptide, D-dimer, and lactic acid. Serum GRP78 and Caspase-3 levels showed moderate predictive values for HF patients. Conclusion: ER stress markers, GRP78 and Caspase-3, had a certain predictive value in HF and can be used as serum biomarkers for the diagnosis of HF. Additionally, GRP78 showed a certain predictive value in HF severity.

13.
Membranes (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676881

RESUMO

The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.

14.
Food Chem ; 411: 135449, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669336

RESUMO

The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.


Assuntos
Lipídeos de Membrana , Ceras , Humanos , Lipídeos de Membrana/metabolismo , Ceras/química , Frutas/química
15.
World J Clin Cases ; 10(35): 12909-12919, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36569022

RESUMO

BACKGROUND: Increased lipoprotein (a) [lp (a)] has proinflammatory effects, which increase the risk of coronary artery disease. However, the association between lp (a) variability and follow-up C-reactive protein (CRP) level in patients undergoing percutaneous coronary intervention (PCI) has not been investigated. AIM: To explore the association between lp (a) variability and mean CRP levels within the 1st year post-PCI. METHODS: Results of lp (a) and CRP measurements from at least three follow-up visits of patients who had received PCI were retrospectively analyzed. Standard deviation (SD), coefficient of variation (CV), and variability independent of the mean (VIM) are presented for the variability for lp (a) and linear regression analysis was conducted to correlate lp (a) variability and mean follow-up CRP level. The relationship of lp (a) variability and inflammation status was analyzed by restricted cubic spline analysis. Finally, exploratory analysis was performed to test the consistency of results in different populations. RESULTS: A total of 2712 patients were enrolled. Patients with higher variability of lp (a) had a higher level of mean follow-up CRP (P < 0.001). lp (a) variability was positively correlated with the mean follow-up CRP (SD: ß = 0.023, P < 0.001; CV: ß = 0.929, P < 0.001; VIM: ß = 1.648, P < 0.001) by multivariable linear regression analysis. Exploratory analysis showed that the positive association remained consistent in most subpopulations. CONCLUSION: Lp (a) variability correlated with mean follow-up CRP level and high variability could be considered an independent risk factor for increased post-PCI CRP level.

16.
Plant J ; 112(4): 982-997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164829

RESUMO

Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Ombro , Regulação da Expressão Gênica de Plantas
17.
ACS Omega ; 7(36): 32549-32561, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120076

RESUMO

Microbial enhanced oil recovery (MEOR) is a potential tertiary oil recovery method. However, past research has failed to describe microbial growth and metabolism reasonably, especially quantification of reaction equations and operating parameters is still not clear. The present study investigated the ability of bacteria extracted from Ansai Oilfield for MEOR. Through core flooding experiments, bacteria-treated experiments produced approximately 6.28-9.81% higher oil recovery than control experiments. Then, the microbial reaction kinetic model was established based on laboratory experimental data and mass conservation. Furthermore, the proposed model was validated by matching core flooding experiment results. Lastly, the effects of different injection parameters on bacteria growth, bacteria migration, metabolite migration, residual oil distribution, and oil recovery were studied by establishing a field-scale model. The results indicate that the injected bacteria concentration and nutrient concentration have a great influence on bacteria growth in a reservoir and the low nutrient concentration seriously restricts bacteria growth. Compared with the injected bacteria concentration, nutrient concentration has a decisive effect on bacteria and metabolite migration. The injected bacteria concentration has little effect on oil recovery, while nutrient concentration and slug volume have a significant effect on oil recovery.

18.
New Phytol ; 235(5): 1913-1926, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686614

RESUMO

Flavor-imparting volatile chemicals accumulate as fruits ripen, making major contributions to taste. The NAC transcription factor nonripening (NAC-NOR) and DNA demethylase 2 (SlDML2) are essential for tomato fruit ripening, but details of the potential roles and the relationship between these two regulators in the synthesis of volatiles are lacking. Here, we show substantial reductions in fatty acid and carotenoid-derived volatiles in tomato slnor and sldml2 mutants. An unexpected finding is the redundancy and divergence in volatile profiles, biosynthetic gene expression, and DNA methylation in slnor and sldml2 mutants relative to wild-type tomato fruit. Reduced transcript levels are accompanied by hypermethylation of promoters, including the NAC-NOR target gene lipoxygenase (SlLOXC) that is involved in fatty acid-derived volatile synthesis. Interestingly, NAC-NOR activates SlDML2 expression by directly binding to its promoter both in vitro and in vivo. Meanwhile, reduced NAC-NOR expression in the sldml2 mutant is accompanied by hypermethylation of its promoter. These results reveal a relationship between SlDML2-mediated DNA demethylation and NAC-NOR during tomato fruit ripening. In addition to providing new insights into the metabolic modulation of flavor volatiles, the outcome of our study contributes to understanding the genetics and control of fruit ripening and quality attributes in tomato.


Assuntos
Solanum lycopersicum , DNA , Ácidos Graxos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Am Chem Soc ; 144(19): 8807-8817, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522220

RESUMO

Here, we describe the unexpected discovery of a Cu-catalyzed condensation polymerization reaction of propargylic electrophiles (CPPE) that transforms simple C3 building blocks into polydiynes of C6 repeating units. This reaction was achieved by a simple system composed of a copper acetylide initiator and an electron-rich phosphine ligand. Alkyne polymers (up to 33.8 kg/mol) were produced in good yields and exclusive regioselectivity with high functional group compatibility. Hydrogenation of the product afforded a new polyolefin-type backbone, while base-mediated isomerization led to a new type of dienyne-based electron-deficient conjugated polymer. Mechanistic studies revealed a new α-α selective Cu-catalyzed dimerization pathway of the C3 unit, followed by in situ organocopper-mediated chain-growth propagation. These insights not only provide an important understanding of the Cu-catalyzed CPPE of C3, C4, and C6 monomers in general but also lead to a significantly improved synthesis of polydiynes from simpler starting materials with handles for the incorporation of an α-end functional group.


Assuntos
Alcinos , Cobre , Catálise , Dimerização , Polimerização , Polímeros
20.
Peptides ; 152: 170774, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35219808

RESUMO

BACKGROUND: Endoplasmic reticulum stress (ERS) plays an important role in the process of myocardial hypertrophy in diabetic cardiomyopathy (DCM). Irisin, a novel cytokine, has been found to protect against cardiac diastolic dysfunction in DCM. We aimed to investigate the role of irisin in cardiac hypertrophy and to elucidate the underlying mechanisms. METHODS: H9c2 cells were induced with 33 mM glucose to construct a cardiac hypertrophy cell model, which was then treated with irisin in the presence or absence of the ERS inducer tunicamycin (TM). The cell surface area was measured by FITC-phalloidin staining. The atrial natriuretic peptide levels were detected by an enzyme-linked immunosorbent assay. Furthermore, the expression of the ERS-related proteins, P-PERK, PERK, IRE1α and GRP78, was detected by western blotting. RESULTS: Irisin significantly reduced myocardial hypertrophy and suppressed high glucose (HG)-induced oxidative stress. Meanwhile, the protective effect of irisin on cardiomyoblasts was reversed by the ERS inducer, TM. Additionally, we detected ERS-associated signaling pathway proteins and found that irisin significantly reduced the protein expression levels of GRP78 and p-PERK/PERK. CONCLUSION: These results suggest that irisin ameliorates HG-induced cardiac hypertrophy by inhibiting ERS.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Apoptose , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Glucose/metabolismo , Glucose/toxicidade , Humanos , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA