Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 26(9): 2156-2165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38598002

RESUMO

Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Epigênese Genética , Neoplasias , Proteínas Proto-Oncogênicas , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
2.
J Hazard Mater ; 369: 50-61, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30772687

RESUMO

The magnetic lignin-based adsorbent (Fe3O4/C-ACLS) has been successfully prepared and applied to adsorbing azo dyes Congo red, Titan yellow and Eriochrome blue black R. The samples were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray powder diffraction (XRD), vibration sample magnetometer (VSM), Raman spectroscopy and elemental analysis. In the process of adsorption, five kinds of influencing factors and recycling regeneration were discussed, and the adsorption mechanisms such as kinetics, isotherm, thermodynamics were explored. The results show that Fe3O4/C-ACLS can remove 98%, 92% and 99% of Congo red, Titan yellow and Eriochrome blue black R, respectively. Under the same conditions, the removal rate was 87%, 84% and 88% after 5 times adsorption cycle, respectively. Pseudo-first-order, pseudo-second-order kinetics, Elovich model and intraparticle diffusion model were studied, and the results show that the adsorption process conforms to pseudo-second-order kinetics model, and the diffusion rate is controlled by many steps. The results of isotherm model and thermodynamics show that the adsorption process is consistent with Langmuir model and is mainly a spontaneous chemical endothermic process of monolayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA