Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010338

RESUMO

In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Carbapenêmicos , Carbapenêmicos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Fluxo de Trabalho , Genômica/métodos , Antibacterianos/farmacologia
2.
Appl Environ Microbiol ; 89(6): e0063523, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272812

RESUMO

Stenotrophomonas maltophilia is an environmental bacterium as well as an emerging opportunistic multidrug-resistant pathogen. They use the endogenous diffusible signal factor (DSF) quorum sensing (QS) system to coordinate population behavior and regulate virulence processes but can also respond to exogenous N-acyl-homoserine lactone (AHL) signals produced by neighboring bacteria. The effect of these QS signals on the global gene expression of this species remains, however, unknown. Whole-transcriptome sequencing analyses were performed for exponential cultures of S. maltophilia K279a treated with exogenous DSF or AHLs. Addition of DSF and AHLs signals resulted in changes in expression of at least 2-fold for 28 and 82 genes, respectively. Interestingly, 22 of these genes were found upregulated by both QS signals, 14 of which were shown to also be induced during the stationary phase. Gene functions regulated by all conditions included lipid and amino acid metabolism, stress response and signal transduction, nitrogen and iron metabolism, and adaptation to microoxic conditions. Among the common top upregulated QS core genes, a putative TetR-like regulator (locus tag SMLT2053) was selected for functional characterization. This regulator controls its own ß-oxidation operon (Smlt2053-Smlt2051), and it is found to sense long-chain fatty acids (FAs), including the QS signal DSF. Gene knockout experiments reveal that operon Smlt2053-Smlt2051 is involved in biofilm formation. Overall, our findings provide clues on the effect that QS signals have in S. maltophilia QS-related phenotypes and the transition from the exponential to the stationary phase and bacterial fitness under high-density growth. IMPORTANCE The quorum sensing system in Stenotrophomonas maltophilia, in addition to coordinating the bacterial population, controls virulence-associated phenotypes, such as biofilm formation, motility, protease production, and antibiotic resistance mechanisms. Biofilm formation is frequently associated with the persistence and chronic nature of nosocomial infections. In addition, biofilms exhibit high resistance to antibiotics, making treatment of these infections extremely difficult. The importance of studying the metabolic and regulatory systems controlled by quorum sensing autoinducers will make it possible to discover new targets to control pathogenicity mechanisms in S. maltophilia.


Assuntos
Percepção de Quorum , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Biofilmes , Virulência , Acil-Butirolactonas/metabolismo , Ácidos Graxos/metabolismo
3.
Commun Biol ; 6(1): 623, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296226

RESUMO

Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.


Assuntos
Epigenômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Cromossomo Y
4.
Front Plant Sci ; 14: 1116863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152146

RESUMO

Introduction: Understanding the adaptive capacity to current climate change of drought-sensitive tree species is mandatory, given their limited prospect of migration and adaptation as long-lived, sessile organisms. Knowledge about the molecular and eco-physiological mechanisms that control drought resilience is thus key, since water shortage appears as one of the main abiotic factors threatening forests ecosystems. However, our current background is scarce, especially in conifers, due to their huge and complex genomes. Methods: Here we investigated the eco-physiological and transcriptomic basis of drought response of the climate change-threatened conifer Cedrus atlantica. We studied C. atlantica seedlings from two locations with contrasting drought conditions to investigate a local adaptation. Seedlings were subjected to experimental drought conditions, and were monitored at immediate (24 hours) and extended (20 days) times. In addition, post-drought recovery was investigated, depicting two contrasting responses in both locations (drought resilient and non-resilient). Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of drought resilience and investigate a rapid local adaptation of C. atlantica. Results: De novo transcriptome assembly was performed for the first time in this species, providing differences in gene expression between the immediate and extended treatments, as well as among the post-drought recovery phenotypes. Weighted gene co-expression network analysis showed a regulation of stomatal closing and photosynthetic activity during the immediate drought, consistent with an isohydric dynamic. During the extended drought, growth and flavonoid biosynthesis inhibition mechanisms prevailed, probably to increase root-to-shoot ratio and to limit the energy-intensive biosynthesis of secondary metabolites. Drought sensitive individuals failed in metabolism and photosynthesis regulation under drought stress, and in limiting secondary metabolite production. Moreover, genomic differences (SNPs) were found between drought resilient and sensitive seedlings, and between the two studied locations, which were mostly related to transposable elements. Discussion: This work provides novel insights into the transcriptomic basis of drought response of C. atlantica, a set of candidate genes mechanistically involved in its drought sensitivity and evidence of a rapid local adaptation. Our results may help guide conservation programs for this threatened conifer, contribute to advance drought-resilience research and shed light on trees' adaptive potential to current climate change.

5.
Bioinform Adv ; 3(1): vbac101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726731

RESUMO

Summary: Nanopore reads encode information on the methylation status of cytosines in CpG dinucleotides. The length of the reads makes it comparatively easy to look at patterns consisting of multiple loci; here, we exploit this property to search for regions where one can define subpopulations of molecules based on methylation patterns. As an example, we run our clustering algorithm on known imprinted genes; we also scan chromosome 15 looking for windows corresponding to heterogeneous methylation. Our software can also compute the covariance of methylation across these regions while keeping into account the mixture of different types of reads. Availability and implementation: https://github.com/EmanueleRaineri/cvlr. Contact: simon.heath@cnag.crg.eu. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

6.
Tree Physiol ; 43(2): 315-334, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36210755

RESUMO

Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.


Assuntos
Abies , Abies/fisiologia , Transcriptoma , Secas , Epigênese Genética , Florestas , Árvores/genética , Genômica
7.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350837

RESUMO

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais , Sus scrofa , Vacinação , Imunidade Inata
8.
Nat Commun ; 13(1): 5902, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202811

RESUMO

Methods to reconstruct the mitochondrial DNA (mtDNA) sequence using short-read sequencing come with an inherent bias due to amplification and mapping. They can fail to determine the phase of variants, to capture multiple deletions and to cover the mitochondrial genome evenly. Here we describe a method to target, multiplex and sequence at high coverage full-length human mitochondrial genomes as native single-molecules, utilizing the RNA-guided DNA endonuclease Cas9. Combining Cas9 induced breaks, that define the mtDNA beginning and end of the sequencing reads, as barcodes, we achieve high demultiplexing specificity and delineation of the full-length of the mtDNA, regardless of the structural variant pattern. The long-read sequencing data is analysed with a pipeline where our custom-developed software, baldur, efficiently detects single nucleotide heteroplasmy to below 1%, physically determines phase and can accurately disentangle complex deletions. Our workflow is a tool for studying mtDNA variation and will accelerate mitochondrial research.


Assuntos
Genoma Mitocondrial , DNA Mitocondrial/genética , Desoxirribonuclease I/genética , Genoma Humano/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Nucleotídeos , RNA , Análise de Sequência de DNA/métodos
9.
Sci Rep ; 12(1): 14162, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986060

RESUMO

In non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.


Assuntos
RNA Longo não Codificante , Dourada , Animais , Células Germinativas , Haploidia , Masculino , RNA Longo não Codificante/genética , RNA-Seq , Dourada/genética , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo , Transcriptoma
10.
Sci Rep ; 12(1): 14439, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002559

RESUMO

RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.


Assuntos
Glioblastoma , Glioma , Carcinogênese , Fusão Gênica , Glioblastoma/patologia , Glioma/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Fusão Oncogênica/genética , RNA-Seq
11.
Bioinformatics ; 38(5): 1235-1243, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718417

RESUMO

MOTIVATION: DNA methylation plays a key role in a variety of biological processes. Recently, Nanopore long-read sequencing has enabled direct detection of these modifications. As a consequence, a range of computational methods have been developed to exploit Nanopore data for methylation detection. However, current approaches rely on a human-defined threshold to detect the methylation status of a genomic position and are not optimized to detect sites methylated at low frequency. Furthermore, most methods use either the Nanopore signals or the basecalling errors as the model input and do not take advantage of their combination. RESULTS: Here, we present DeepMP, a convolutional neural network-based model that takes information from Nanopore signals and basecalling errors to detect whether a given motif in a read is methylated or not. Besides, DeepMP introduces a threshold-free position modification calling model sensitive to sites methylated at low frequency across cells. We comprehensively benchmarked DeepMP against state-of-the-art methods on Escherichia coli, human and pUC19 datasets. DeepMP outperforms current approaches at read-based and position-based methylation detection across sites methylated at different frequencies in the three datasets. AVAILABILITY AND IMPLEMENTATION: DeepMP is implemented and freely available under MIT license at https://github.com/pepebonet/DeepMP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Sequenciamento por Nanoporos , Nanoporos , Humanos , Software , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Escherichia coli/genética , DNA/genética
12.
Sci Rep ; 11(1): 12848, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145303

RESUMO

Chronic obstructive pulmonary disease (COPD) is a destructive inflammatory disease and the genes expressed within the lung are crucial to its pathophysiology. We have determined the RNAseq transcriptome of bronchial brush cells from 312 stringently defined ex-smoker patients. Compared to healthy controls there were for males 40 differentially expressed genes (DEGs) and 73 DEGs for females with only 26 genes shared. The gene ontology (GO) term "response to bacterium" was shared, with several different DEGs contributing in males and females. Strongly upregulated genes TCN1 and CYP1B1 were unique to males and females, respectively. For male emphysema (E)-dominant and airway disease (A)-dominant COPD (defined by computed tomography) the term "response to stress" was found for both sub-phenotypes, but this included distinct up-regulated genes for the E-sub-phenotype (neutrophil-related CSF3R, CXCL1, MNDA) and for the A-sub-phenotype (macrophage-related KLF4, F3, CD36). In E-dominant disease, a cluster of mitochondria-encoded (MT) genes forms a signature, able to identify patients with emphysema features in a confirmation cohort. The MT-CO2 gene is upregulated transcriptionally in bronchial epithelial cells with the copy number essentially unchanged. Both MT-CO2 and the neutrophil chemoattractant CXCL1 are induced by reactive oxygen in bronchial epithelial cells. Of the female DEGs unique for E- and A-dominant COPD, 88% were detected in females only. In E-dominant disease we found a pronounced expression of mast cell-associated DEGs TPSB2, TPSAB1 and CPA3. The differential genes discovered in this study point towards involvement of different types of leukocytes in the E- and A-dominant COPD sub-phenotypes in males and females.


Assuntos
Suscetibilidade a Doenças , Expressão Gênica , Leucócitos/metabolismo , Mitocôndrias/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Biomarcadores , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Leucócitos/imunologia , Leucócitos/patologia , Masculino , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Fatores Sexuais , Transcriptoma
13.
Clin Cancer Res ; 27(2): 645-655, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106291

RESUMO

PURPOSE: Glioblastoma is the most aggressive brain tumor in adults and has few therapeutic options. The study of molecular subtype classifications may lead to improved prognostic classification and identification of new therapeutic targets. The Cancer Genome Atlas (TCGA) subtype classification has mainly been applied in U.S. clinical trials, while the intrinsic glioma subtype (IGS) has mainly been applied in European trials. EXPERIMENTAL DESIGN: From paraffin-embedded tumor samples of 432 patients with uniformly treated, newly diagnosed glioblastoma, we built tissue microarrays for IHC analysis and applied RNA sequencing to the best samples to classify them according to TCGA and IGS subtypes. RESULTS: We obtained transcriptomic results from 124 patients. There was a lack of agreement among the three TCGA classificatory algorithms employed, which was not solely attributable to intratumoral heterogeneity. There was overlapping of TCGA mesenchymal subtype with IGS cluster 23 and of TCGA classical subtype with IGS cluster 18. Molecular subtypes were not associated with prognosis, but levels of expression of 13 novel genes were identified as independent prognostic markers in glioma-CpG island methylator phenotype-negative patients, independently of clinical factors and MGMT methylation. These findings were validated in at least one external database. Three of the 13 genes were selected for IHC validation. In particular, high ZNF7 RNA expression and low ZNF7 protein expression were strongly associated with longer survival, independently of molecular subtypes. CONCLUSIONS: TCGA and IGS molecular classifications of glioblastoma have no higher prognostic value than individual genes and should be refined before being applied to clinical trials.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Imuno-Histoquímica/métodos , Fatores de Transcrição Kruppel-Like/genética , Análise de Sequência de RNA/métodos , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Ilhas de CpG/genética , Metilação de DNA , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Análise de Sobrevida
14.
PLoS Negl Trop Dis ; 14(12): e0008870, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301456

RESUMO

Rift Valley fever phlebovirus (RVFV) causes an emerging zoonotic disease and is mainly transmitted by Culex and Aedes mosquitoes. While Aedes aegypti-dengue virus (DENV) is the most studied model, less is known about the genes involved in infection-responses in other mosquito-arboviruses pairing. The main objective was to investigate the molecular responses of Cx. pipiens to RVFV exposure focusing mainly on genes implicated in innate immune responses. Mosquitoes were fed with blood spiked with RVFV. The fully-engorged females were pooled at 3 different time points: 2 hours post-exposure (hpe), 3- and 14-days post-exposure (dpe). Pools of mosquitoes fed with non-infected blood were also collected for comparisons. Total RNA from each mosquito pool was subjected to RNA-seq analysis and a de novo transcriptome was constructed. A total of 451 differentially expressed genes (DEG) were identified. Most of the transcriptomic alterations were found at an early infection stage after RVFV exposure. Forty-eight DEG related to immune infection-response were characterized. Most of them were related with the RNAi system, Toll and IMD pathways, ubiquitination pathway and apoptosis. Our findings provide for the first time a comprehensive view on Cx. pipiens-RVFV interactions at the molecular level. The early depletion of RNAi pathway genes at the onset of the RVFV infection would allow viral replication in mosquitoes. While genes from the Toll and IMD immune pathways were altered in response to RVFV none of the DEG were related to the JAK/STAT pathway. The fact that most of the DEG involved in the Ubiquitin-proteasome pathway (UPP) or apoptosis were found at an early stage of infection would suggest that apoptosis plays a regulatory role in infected Cx. pipiens midguts. This study provides a number of target genes that could be used to identify new molecular targets for vector control.


Assuntos
Culex/virologia , Interações Hospedeiro-Patógeno , Vírus da Febre do Vale do Rift/fisiologia , Animais , Evolução Biológica , Culex/imunologia , Regulação da Expressão Gênica/imunologia , RNA Viral , Transcriptoma
15.
Insect Biochem Mol Biol ; 127: 103474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007407

RESUMO

Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.


Assuntos
Hemípteros/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Transcriptoma , Animais , Insetos Vetores/microbiologia , Malus/microbiologia
16.
Sci Rep ; 9(1): 2863, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814535

RESUMO

Geminiviruses are plant ssDNA viruses that replicate through dsDNA intermediates and form minichromosomes which carry the same epigenetic marks as the host chromatin. During the infection, geminiviruses are targets of the post-transcriptional and transcriptional gene silencing machinery. To obtain insights into the connection between virus-derived small RNAs (vsRNAs), viral genome methylation and gene expression, we obtained the transcriptome, sRNAome and methylome from the geminivirus Tomato yellow leaf curl virus-infected tomato plants. The results showed accumulation of transcripts just at the viral ORFs, while vsRNAs spanned the entire genome, showing a prevalent accumulation at regions where the viral ORFs overlapped. The viral genome was not homogenously methylated showing two highly methylated regions located in the C1 ORF and around the intergenic region (IR). The compilation of those results showed a partial correlation between vsRNA accumulation, gene expression and DNA methylation. We could distinguish different epigenetic scenarios along the viral genome, suggesting that in addition to its function as a plant defence mechanism, DNA methylation could have a role in viral gene regulation. To our knowledge, this is the first report that shows integrative single-nucleotide maps of DNA methylation, vsRNA accumulation and gene expression from a plant virus.


Assuntos
Begomovirus/metabolismo , Metilação de DNA/fisiologia , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , RNA Viral/biossíntese , Transcriptoma/fisiologia , Begomovirus/genética , DNA Viral/genética , Genoma Viral/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , RNA Viral/genética
17.
Fish Shellfish Immunol ; 86: 14-24, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30428392

RESUMO

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the fish central nervous system. It is considered one of the most serious viral diseases in marine aquaculture, the European sea bass (Dicentrarchus labrax) being amongst the most susceptible. We have evaluated the European sea bass brain derived cell line (DLB-1) susceptibility to NNV genotypes and evaluated its transcriptomic profile. DLB-1 cells supported NNV gene transcription and replication since strains belonging to the four NNV genotypes produce cytopathic effects. Afterwards, DLB-1 cells were infected with an RGNNV strain, the one which showed the highest replication, for 12 and 72 h and an RNA-seq analysis was performed to identify potential genes involved in the host-NNV interactions. Differential expression analysis showed the up-regulation of many genes related to immunity, heat-shock proteins or apoptosis but not to proteasome or autophagy processes. These data suggest that the immune response, mainly the interferon (IFN) pathway, is not powerful enough to abrogate the infection, and cells finally suffer stress and die by apoptosis liberating infective particles. GO enrichment also revealed, for the first time, the down-regulation of terms related to brain/neuron biology indicating molecular mechanisms causing the pathogenic effect of NNV. This study opens the way to understand key elements in sea bass brain and NNV interactions.


Assuntos
Bass , Neurônios/virologia , Nodaviridae/fisiologia , Animais , Encéfalo/citologia , Linhagem Celular , Perfilação da Expressão Gênica , Genótipo , Nodaviridae/genética , Replicação Viral
18.
Biotechnol Bioeng ; 116(3): 677-692, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30512195

RESUMO

The existence of dynamic cellular phenotypes in changing environmental conditions is of major interest for cell biologists who aim to understand the mechanism and sequence of regulation of gene expression. In the context of therapeutic protein production by Chinese Hamster Ovary (CHO) cells, a detailed temporal understanding of cell-line behavior and control is necessary to achieve a more predictable and reliable process performance. Of particular interest are data on dynamic, temporally resolved transcriptional regulation of genes in response to altered substrate availability and culture conditions. In this study, the gene transcription dynamics throughout a 9-day batch culture of CHO cells was examined by analyzing histone modifications and gene expression profiles in regular 12- and 24-hr intervals, respectively. Three levels of regulation were observed: (a) the presence or absence of DNA methylation in the promoter region provides an ON/OFF switch; (b) a temporally resolved correlation is observed between the presence of active transcription- and promoter-specific histone marks and the expression level of the respective genes; and (c) a major mechanism of gene regulation is identified by interaction of coding genes with long non-coding RNA (lncRNA), as observed in the regulation of the expression level of both neighboring coding/lnc gene pairs and of gene pairs where the lncRNA is able to form RNA-DNA-DNA triplexes. Such triplex-forming regions were predominantly found in the promoter or enhancer region of the targeted coding gene. Significantly, the coding genes with the highest degree of variation in expression during the batch culture are characterized by a larger number of possible triplex-forming interactions with differentially expressed lncRNAs. This indicates a specific role of lncRNA-triplexes in enabling rapid and large changes in transcription. A more comprehensive understanding of these regulatory mechanisms will provide an opportunity for new tools to control cellular behavior and to engineer enhanced phenotypes.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Adaptação Fisiológica , Animais , Células CHO , Cricetinae , Cricetulus , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Transcriptoma
19.
J Invest Dermatol ; 139(4): 900-908, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359577

RESUMO

Large and giant congenital melanocytic nevi (CMN) are rare melanocytic lesions mostly caused by postzygotic NRAS alteration. Molecular characterization is usually focused on NRAS and BRAF genes in a unique biopsy sample of the CMN. However, large/giant CMN may exhibit phenotypic differences among distinct areas, and patients differ in features such as presence of multiple CMN or spilus-like lesions. Herein, we have characterized a series of 21 large/giant CMN including patients with spilus-type nevi (9/21 patients, 42.8%). Overall, 53 fresh frozen biopsy samples corresponding to 40 phenotypically characterized areas of large/giant CMNs and 13 satellite lesions were analyzed with a multigene panel and RNA sequencing. Mutational screening showed mutations in 76.2% (16/21) of large/giant CMNs. A NRAS mutation was found in 57.1% (12/21) of patients, and mutations in other genes such as BRAF, KRAS, APC, and MET were detected in 14.3% (3/21) of patients. RNA sequencing showed the fusion transcript ZEB2-ALK and SOX5-RAF1 in large/giant CMN from two patients without missense mutations. Both alterations were not detected in unaffected skin and were detected in different areas of affected skin. These findings suggest that large/giant CMN may result from distinct molecular events in addition to NRAS mutations, including point mutations and fusion transcripts.


Assuntos
DNA de Neoplasias/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Mutação , Nevo Pigmentado/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Seguimentos , GTP Fosfo-Hidrolases/metabolismo , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Nevo Pigmentado/metabolismo , Nevo Pigmentado/patologia , Fenótipo , Estudos Retrospectivos , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Adulto Jovem
20.
Br J Haematol ; 184(3): 373-383, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565652

RESUMO

Long non-coding RNAs (lncRNAs) comprise a family of non-coding transcripts that are emerging as relevant gene expression regulators of different processes, including tumour development. To determine the possible contribution of lncRNA to the pathogenesis of follicular lymphoma (FL) we performed RNA-sequencing at high depth sequencing in primary FL samples ranging from grade 1-3A to aggressive grade 3B variants using unpurified (n = 16) and purified (n = 12) tumour cell suspensions from nodal samples. FL grade 3B had a significantly higher number of differentially expressed lncRNAs (dif-lncRNAs) with potential target coding genes related to cell cycle regulation. Nine out of the 18 selected dif-lncRNAs were validated by quantitative real time polymerase chain reaction in an independent series (n = 43) of FL. RP4-694A7.2 was identified as the top deregulated lncRNA potentially involved in cell proliferation. RP4-694A7.2 silencing in the WSU-FSCCL FL cell line reduced cell proliferation due to a block in the G1/S phase. The relationship between RP4-694A7.2 and proliferation was confirmed in primary samples as its expression levels positively related to the Ki-67 proliferation index. In summary, lncRNAs are differentially expressed across the clinico-biological spectrum of FL and a subset of them, related to cell cycle, may participate in cell proliferation regulation in these tumours.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/metabolismo , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Pontos de Checagem da Fase S do Ciclo Celular , Feminino , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Masculino , RNA Longo não Codificante/genética , RNA Neoplásico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA