Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Phys Med ; 124: 103429, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39024963

RESUMO

PURPOSE: To compare the spectral performance of two different DSCT (DSCT-Pulse and DSCT-Force) on virtual monoenergetic images (VMIs) at low energy levels. METHODS: An image quality phantom was scanned on the two DSCTs at three dose levels: 11/6/1.8 mGy. Level 3 of an advanced modeled iterative reconstruction algorithm was used. Noise power spectrum and task-based transfer function were computed on VMIs from 40 to 70 keV to assess noise magnitude and noise texture (fav) and spatial resolution (f50). A detectability index (d') was computed to assess the detection of one contrast-enhanced abdominal lesion as a function of the keV level used. RESULTS: For all dose levels and all energy levels, noise magnitude was significantly higher (p < 0.05) with DSCT-Pulse than with DSCT-Force (12.6 ± 2.7 % at 1.8 mGy, 9.1 ± 2.9 % at 6 mGy and 4.0 ± 2.7 % at 11 mGy). For all energy levels, fav values were significantly higher (p < 0.05) with DSCT-Pulse than with DSCT-Force at 1.8 mGy (4.8 ± 3.9 %) and at 6 mGy (5.5 ± 2.5 %) but similar at 11 mGy (0.2 ± 3.6 %; p = 0.518). For all energy levels, f50 values were significantly higher with DSCT-Pulse than with DSCT-Force (12.7 ± 5.6 % at 1.8 mGy, 17.9 ± 4.5 % at 6 mGy and 13.1 ± 2.6 % at 11 mGy). For all keV, similar d' values were found with both DSCT-Force and DSCT-Pulse at 11 mGy (-1.0 ± 3.1 %; p = 0.084). For other dose levels, d' values were significantly lower with DSCT-Pulse than with DSCT-Force (9.1 ± 3.2 % at 1.8 mGy and -6.3 ± 3.9 % at 6 mGy). CONCLUSION: Compared with the DSCT-Force, the DSCT-Pulse improved noise texture and spatial resolution, but noise magnitude was slightly higher and detectability slightly lower, particularly when the dose level was reduced.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Doses de Radiação , Algoritmos , Humanos
2.
Diagn Interv Imaging ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38760277

RESUMO

PURPOSE: The purpose of this study was to assess image-quality and dose reduction potential using a photon-counting computed tomography (PCCT) system by comparison with two different dual-source CT (DSCT) systems using two phantoms. MATERIALS AND METHODS: Acquisitions on phantoms were performed using two DSCT systems (DSCT1 [Somatom Force] and DSCT2 [Somatom Pro.Pulse]) and one PCCT system (Naeotom Alpha) at four dose levels (13/6/3.4/1.8 mGy). Noise power spectrum (NPS) and task-based transfer function (TTF) were computed to assess noise magnitude and noise texture and spatial resolution (f50), respectively. Detectability indexes (d') were computed to model the detection of abdominal lesions: one unenhanced high-contrast task, one contrast-enhanced high-contrast task and one unenhanced low-contrast task. Image quality was subjectively assessed on an anthropomorphic phantom by two radiologists. RESULTS: For all dose levels, noise magnitude values were lower with PCCT than with DSCTs. For all CT systems, similar noise texture values were found at 13 and 6 mGy, but the greatest noise texture values were found for DSCT2 and the lowest for PCCT at 3.4 and 1.8 mGy. For high-contrast inserts, similar or lower f50 values were found with PCCT than with DSCT1 and the opposite pattern was found for the low-contrast insert. For the three simulated lesions, d' values were greater with PCCT than with DSCTs. Abdominal images were rated satisfactory for clinical use by the radiologists for all dose levels with PCCT and for 13 and 6 mGy with DSCTs. CONCLUSION: By comparison with DSCTs, PCCT reduces image-noise and improves detectability of simulated abdominal lesions without altering the spatial resolution and image texture. Image-quality obtained with PCCT seem to indicate greater potential for dose optimization than those obtained with DSCTs.

3.
Diagn Interv Imaging ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38429207

RESUMO

PURPOSE: The purpose of this study was to assess image quality and dose level using a photon-counting CT (PCCT) scanner by comparison with a dual-source CT (DSCT) scanner on virtual monoenergetic images (VMIs) at low energy levels. MATERIALS AND METHODS: A phantom was scanned using a DSCT and a PCCT with a volume CT dose index of 11 mGy, and additionally at 6 mGy and 1.8 mGy for PCCT. Noise power spectrum and task-based transfer function were evaluated from 40 to 70 keV on VMIs to assess noise magnitude and noise texture (fav) and spatial resolution on two iodine inserts (f50), respectively. A detectability index (d') was computed to assess the detection of two contrast-enhanced lesions according to the energy level used. RESULTS: For all energy levels, noise magnitude values were lower with PCCT than with DSCT at 11 and 6 mGy, but greater at 1.8 mGy. fav values were higher with PCCT than with DSCT at 11 mGy (8.6 ± 1.5 [standard deviation [SD]%), similar at 6 mGy (1.6 ± 1.5 [SD]%) and lower at 1.8 mGy (-17.8 ± 2.2 [SD]%). For both inserts, f50 values were higher with PCCT than DSCT at 11- and 6 mGy for all keV levels, except at 6 mGy and 40 keV. d' values were higher with PCCT than with DSCT at 11- and 6 mGy for all keV and both simulated lesions. Similar d' values to those of the DSCT at 11 mGy, were obtained at 2.25 mGy for iodine insert at 2 mg/mL and at 0.96 mGy for iodine insert at 4 mg/mL at 40 keV. CONCLUSION: Compared to DSCT, PCCT reduces noise magnitude and improves noise texture, spatial resolution and detectability on VMIs for all low-keV levels.

5.
Diagn Interv Imaging ; 105(3): 110-117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949769

RESUMO

PURPOSE: The purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a cardiac computed tomography (CT) protocol. MATERIALS AND METHODS: Acquisitions were performed using the CT ACR 464 phantom at three dose levels (volume CT dose indexes: 7.1/5.2/3.1 mGy) using a prospective cardiac CT protocol. Raw data were reconstructed using the three levels of AiCE and PIQE (Mild, Standard and Strong). The noise power spectrum (NPS) and task-based transfer function (TTF) for bone and acrylic inserts were computed. The detectability index (d') was computed to model the detectability of the coronary lumen (350 Hounsfield units and 4-mm diameter) and non-calcified plaque (40 Hounsfield units and 2-mm diameter). RESULTS: Noise magnitude values were lower with PIQE than with AiCE (-13.4 ± 6.0 [standard deviation (SD)] % for Mild, -20.4 ± 4.0 [SD] % for Standard and -32.6 ± 2.6 [SD] % for Strong levels). The average NPS spatial frequencies shifted towards higher frequencies with PIQE than with AiCE (21.9 ± 3.5 [SD] % for Mild, 20.1 ± 3.0 [SD] % for Standard and 12.5 ± 3.5 [SD] % for Strong levels). The TTF values at fifty percent (f50) values shifted towards higher frequencies with PIQE than with AiCE for acrylic inserts but, for bone inserts, f50 values were found to be close. Whatever the dose and DLR level, d' values of both simulated cardiac lesions were higher with PIQE than with AiCE. For the simulated coronary lumen, d' values were better by 35.1 ± 9.3 (SD) % on average for all dose levels for Mild, 43.2 ± 5.0 (SD) % for Standard, and 62.6 ± 1.2 (SD) % for Strong levels. CONCLUSION: Compared to AiCE, PIQE reduced noise, improved spatial resolution, noise texture and detectability of simulated cardiac lesions. PIQE seems to have a greater potential for dose reduction in cardiac CT acquisition.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação , Algoritmos , Processamento de Imagem Assistida por Computador , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagens de Fantasmas
6.
Diagnostics (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066732

RESUMO

Images from 64 patients undergoing an enhanced abdominal-pelvis scan at portal phase in dual-energy CT mode for the diagnosis of colitis or bowel obstruction were retrospectively analyzed. Acquisitions were performed on a third-generation dual-source CT (DSCT) 100/Sn150 kVp. Mixed images were generated, as well as virtual monoenergetic images (VMIs) at 40/50/60/70 keV. Objective image quality was assessed on VMIs and mixed images by measuring contrast, noise and contrast-to-noise ratio (CNR). Noise, smoothing and overall image quality were subjectively analyzed by two radiologists using Likert scales. For both patient groups, the noise decreased significantly according to the energy level from 40 to 60 keV by -47.2 ± 24.0% for bowel obstruction and -50.4 ± 18.2% for colitis. It was similar between 60 and 70 keV (p = 0.475 and 0.059, respectively). Noise values were significantly higher in VMIs than in mixed images, except for 70 keV (p = 0.53 and 0.071, respectively). Similar results were observed for contrast values, with a decrease between 40 and 70 keV of -56.3 ± 7.9% for bowel obstruction -56.2 ± 10.9% for colitis. The maximum CNR value was found at 60 keV compared to other energy levels and mixed images, but there was no significant difference with the other energy levels apart from 70 keV (-9.7 ± 9.8%) for bowel obstruction and 40 keV (-6.6 ± 8.2%) and 70 keV (-5.8 ± 9.2%) for colitis. The VMIs at 60 keV presented higher scores for all criteria for bowel obstruction and colitis, with no significant difference in smoothing score compared to mixed images (p = 0.119 and p = 0.888, respectively).

7.
J Pers Med ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888075

RESUMO

A wide variety of coils are available for vascular embolization. This study aimed to evaluate the safety and efficacy of a new Prestige coil. We carried out retrospective analysis of a multicenter's registry data collected between February 2022 and November 2022. The choice of embolization agent used to treat peripheral vascular anomalies was left to the investigator's discretion. Patients for whom at least one Prestige coil was used were included in Series 1. All other patients were included in Series 2. Efficacy and safety were evaluated. Patients were followed up for one month. In total, 220 patients were included, 110 in each series. Patients included 149 men (67.7%) and 71 women (32.3%), with a median age of 62.5 years (IQR: 35.8-73). Patient ages were similar in the two series. Complete occlusion of the targeted vessel was reported in 96.4% (n = 106/110) of patients in Series 1 and in 99.7% (n = 109/110) in Series 2. Four patients experienced non-serious adverse events (1.8%, n = 4/220): one experienced back pain and one vomiting in Series 1; one patient had off-target embolization and one a puncture site hematoma in Series 2. Sixteen patients (7.2%, n = 16/220) were lost to follow up. Improvement in the patient's general state at one month was reported in 79.0% (n = 83/105) of patients in Series 1 and in 74.7% (n = 74/99) in Series 2. Ten deaths occurred, five in Series 1 (4.8%, n = 5/105) and five in Series 2 (5.1%, n = 5/99). These deaths all concerned critically ill patients embolized for emergent arterial bleeding. In conclusion, the 1-month follow-up showed that Prestige coils, alone or in combination, are efficient and safe.

8.
Diagnostics (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835782

RESUMO

The purpose of this study was to compare the quality of low-energy virtual monoenergetic images (VMIs) obtained with three Dual-Energy CT (DECT) platforms according to the phantom diameter. Three sections of the Mercury Phantom 4.0 were scanned on two generations of split-filter CTs (SFCT-1st and SFCT-2nd) and on one Dual-source CT (DSCT). The noise power spectrum (NPS), task-based transfer function (TTF), and detectability index (d') were assessed on VMIs from 40 to 70 keV. The highest noise magnitude values were found with SFCT-1st and noise magnitude was higher with DSCT than with SFCT-2nd for 26 cm (10.2% ± 1.3%) and 31 cm (7.0% ± 2.5%), and the opposite for 36 cm (-4.2% ± 2.5%). The highest average NPS spatial frequencies and TTF values at 50% (f50) values were found with DSCT. For all energy levels, the f50 values were higher with SFCT-2nd than SFCT-1st for 26 cm (3.2% ± 0.4%) and the opposite for 31 cm (-6.9% ± 0.5%) and 36 cm (-5.6% ± 0.7%). The lowest d' values were found with SFCT-1st. For all energy levels, the d' values were lower with DSCT than with SFCT-2nd for 26 cm (-6.2% ± 0.7%), similar for 31 cm (-0.3% ± 1.9%) and higher for 36 cm (5.4% ± 2.7%). In conclusion, compared to SFCT-1st, SFCT-2nd exhibited a lower noise magnitude and higher detectability values. Compared with DSCT, SFCT-2nd had a lower noise magnitude and higher detectability for the 26 cm, but the opposite was true for the 36 cm.

9.
Med Phys ; 50(11): 6828-6835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672341

RESUMO

BACKGROUND: Recently, a second generation of split filter dual-energy CT (SFCT) platform has been developed. The thicknesses of the gold and tin filters used to obtain both low- and high-energy spectra have been changed. These differences in filter thickness may affect the spectral separation between the two spectra and thus the quality of spectral images. PURPOSE: To compare the spectral performance of two Split-Filter Dual-Energy CT systems (SFCT-1st and SFCT-2nd ) on virtual monoenergetic images (VMIs) and iodine map. METHODS: A Multi-Energy CT phantom was scanned on two SFCT with a tube voltage of 120 kVp for both systems (SFCT-1st -120 and SFCT-2nd -120) and 140 kVp only for the second generation (SFCT-2nd -140). Acquisitions were performed on the phantom with a CTDIvol close to 11 mGy. Noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated on VMIs from 40 to 70 keV. A detectability index (d') was computed to assess the detection of two contrast-enhanced lesions on VMIs. Hounsfield Unit (HU) accuracy was assessed on VMIs and the accuracy of iodine concentration was assessed on iodine maps. RESULTS: For all keV, noise magnitude values were lower with the SFCT-2nd -120 than with the SFCT-1st -120 (on average: -22.5 ± 2.9%) and higher with the SFCT-2nd -140 than with the SFCT-2nd -120 (on average: 25.0 ± 6.2%). Average NPS spatial frequencies (fav ) were lower with the SFCT-1st -120 than with the SFCT-2nd -120 (-6.0 ± 0.5%) and the SFCT-2nd -140 (-3.6 ± 1.6%). Similar TTF50% values were found for both systems and both kVp for blood and iodine inserts at 2 mg/mL (0.29 ± 0.01 mm-1 ) and at 4 mg/mL (0.31 ± 0.01 mm-1 ). d' values peaked at 40 keV for the SFCT-2nd and at 70 keV for the SFCT-1st . Highest d' values were found for the SFCT-2nd -120 for both simulated lesions. Accuracy of HU values and iodine concentration was higher with the SFCT-2nd than with the SFCT 1st . CONCLUSION: Compared to the SFCT-1st , with similar spatial resolution and noise texture values, the SFCT-2nd -120 exhibited the lowest values for noise magnitude, the highest detectability index values, and more accurate HU values and iodine concentrations.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
10.
Diagn Interv Imaging ; 104(10): 506-512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37286462

RESUMO

PURPOSE: The purpose of this study was to assess the impact of a tin filter on the image quality of ultra-low dose (ULD) chest computed tomography (CT) on three different CT systems. MATERIALS AND METHODS: An image quality phantom was scanned on three CT systems including two split-filter dual-energy CT (SFCT-1 and SFCT-2) scanners and one dual-source CT scanner (DSCT). Acquisitions were performed with a volume CT dose index (CTDIvol) of 0.4 mGy, first at 100 kVp without tin filter (Sn), and second, at Sn100/Sn140 kVp, Sn100/Sn110/Sn120/Sn130/Sn140/Sn150 kVp and Sn100/Sn150 kVp for SFCT-1, SFCT-2 and DSCT respectively. Noise-power-spectrum and task-based transfer function were computed. The detectability index (d') was computed to model the detection of two chest lesions. RESULTS: For DSCT and SFCT-1, noise magnitude values were higher with 100kVp than with Sn100 kVp and with Sn140 kVp or Sn150 kVp than with Sn100 kVp. For SFCT-2, noise magnitude increased from Sn110 kVp to Sn150 kVp and was higher at Sn100 kVp than at Sn110 kVp. For most kVp with the tin filter, the noise amplitude values were lower than those obtained at 100 kVp. For each CT system, noise texture and spatial resolution values were similar with 100 kVp and with all kVp used with a tin filter. For all simulated chest lesions, the highest d' values were obtained at Sn100 kVp for SFCT-1 and DSCT and at Sn110 kVp for SFCT-2. CONCLUSION: For ULD chest CT protocols, the lowest noise magnitude and highest detectability values for simulated chest lesions are obtained with Sn100 kVp for the SFCT-1 and DSCT CT systems and at Sn110 kVp for SFCT-2.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Tórax , Tomógrafos Computadorizados , Imagens de Fantasmas
11.
Phys Med ; 108: 102558, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905775

RESUMO

PURPOSE: To compare quantitatively and qualitatively brain image quality acquired in helical and axial modes on two wide collimation CT systems according to the dose level and algorithm used. METHODS: Acquisitions were performed on an image quality and an anthropomorphic phantoms at three dose levels (CTDIvol: 45/35/25 mGy) on two wide collimation CT systems (GE Healthcare and Canon Medical Systems) in axial and helical modes. Raw data were reconstructed using iterative reconstruction (IR) and deep-learning image reconstruction (DLR) algorithms. The noise power spectrum (NPS) was computed on both phantoms and the task-based transfer function (TTF) on the image quality phantom. The subjective quality of images from an anthropomorphic brain phantom was evaluated by two radiologists including overall image quality. RESULTS: For the GE system, noise magnitude and noise texture (average NPS spatial frequency) were lower with DLR than with IR. For the Canon system, noise magnitude values were lower with DLR than with IR for similar noise texture but the opposite was true for spatial resolution. For both CT systems, noise magnitude was lower with the axial mode than with the helical mode for similar noise texture and spatial resolution. Radiologists rated the overall quality of all brain images as "satisfactory for clinical use", whatever the dose level, algorithm or acquisition mode. CONCLUSIONS: Using 16-cm axial acquisition reduces image noise without changing the spatial resolution and image texture compared to helical acquisitions. Axial acquisition can be used in clinical routine for brain CT examinations with an explored length of less than 16 cm.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Encéfalo , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
12.
Diagnostics (Basel) ; 13(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980490

RESUMO

The study's aim was to assess the impact of a deep learning image reconstruction algorithm (Precise Image; DLR) on image quality and liver metastasis conspicuity compared with an iterative reconstruction algorithm (IR). This retrospective study included all consecutive patients with at least one liver metastasis having been diagnosed between December 2021 and February 2022. Images were reconstructed using level 4 of the IR algorithm (i4) and the Standard/Smooth/Smoother levels of the DLR algorithm. Mean attenuation and standard deviation were measured by placing the ROIs in the fat, muscle, healthy liver, and liver tumor. Two radiologists assessed the image noise and image smoothing, overall image quality, and lesion conspicuity using Likert scales. The study included 30 patients (mean age 70.4 ± 9.8 years, 17 men). The mean CTDIvol was 6.3 ± 2.1 mGy, and the mean dose-length product 314.7 ± 105.7 mGy.cm. Compared with i4, the HU values were similar in the DLR algorithm at all levels for all tissues studied. For each tissue, the image noise significantly decreased with DLR compared with i4 (p < 0.01) and significantly decreased from Standard to Smooth (-26 ± 10%; p < 0.01) and from Smooth to Smoother (-37 ± 8%; p < 0.01). The subjective image assessment confirmed that the image noise significantly decreased between i4 and DLR (p < 0.01) and from the Standard to Smoother levels (p < 0.01), but the opposite occurred for the image smoothing. The highest scores for overall image quality and conspicuity were found for the Smooth and Smoother levels.

13.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766553

RESUMO

BACKGROUND: Despite the development of iterative reconstruction (IR) in diagnostic imaging, CBCT are generally reconstructed with filtered back projection (FBP) in radiotherapy. Varian medical systems, recently released with their latest Halcyon® V2.0 accelerator, a new IR algorithm for CBCT reconstruction. PURPOSE: To assess the image quality of radiotherapy CBCT images reconstructed with FBP and an IR algorithm. METHODS: Three CBCT acquisition modes (head, thorax and pelvis large) available on a Halcyon® were assessed. Five acquisitions were performed for all modes on an image quality phantom and reconstructed with FBP and IR. Task-based image quality assessment was performed with noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d'). To illustrate the image quality obtained with both reconstruction types, CBCT acquisitions were made on 6 patients. RESULTS: The noise magnitude and the spatial frequency of the NPS peak was lower with IR than with FBP for all modes. For all low and high-contrast inserts, the values for TTF at 50% were higher with IR than with FBP. For all inserts and all modes, the contrast values were similar with FBP and IR. For all low and high-contrast simulated lesions, d' values were higher with IR than with FBP for all modes. These results were also found on the 6 patients where the images were less noisy but smoother with IR-CBCT. CONCLUSIONS: Using the IR algorithm for CBCT images in radiotherapy improve image quality and thus could increase the accuracy of online registration and limit positioning errors during processing.

14.
Eur Radiol Exp ; 7(1): 1, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617620

RESUMO

BACKGROUND: To assess the impact of the new version of a deep learning (DL) spectral reconstruction on image quality of virtual monoenergetic images (VMIs) for contrast-enhanced abdominal computed tomography in the rapid kV-switching platform. METHODS: Two phantoms were scanned with a rapid kV-switching CT using abdomen-pelvic CT examination parameters at dose of 12.6 mGy. Images were reconstructed using two versions of DL spectral reconstruction algorithms (DLSR V1 and V2) for three reconstruction levels. The noise power spectrum (NSP) and task-based transfer function at 50% (TTF50) were computed at 40/50/60/70 keV. A detectability index (d') was calculated for enhanced lesions at low iodine concentrations: 2, 1, and 0.5 mg/mL. RESULTS: The noise magnitude was significantly lower with DLSR V2 compared to DLSR V1 for energy levels between 40 and 60 keV by -36.5% ± 1.4% (mean ± standard deviation) for the standard level. The average NPS frequencies increased significantly with DLSR V2 by 23.7% ± 4.2% for the standard level. The highest difference in TTF50 was observed at the mild level with a significant increase of 61.7% ± 11.8% over 40-60 keV energy with DLSR V2. The d' values were significantly higher for DLSR V2 versus DLSR V1. CONCLUSIONS: The DLSR V2 improves image quality and detectability of low iodine concentrations in VMIs compared to DLSR V1. This suggests a great potential of DLSR V2 to reduce iodined contrast doses.


Assuntos
Aprendizado Profundo , Iodo , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
15.
Diagn Interv Imaging ; 104(2): 76-83, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36100524

RESUMO

PURPOSE: The purpose of this study was to assess the impact of the new artificial intelligence deep-learning reconstruction (AI-DLR) algorithm on image quality and radiation dose compared with iterative reconstruction algorithm in lumbar spine computed tomography (CT) examination. MATERIALS AND METHODS: Acquisitions on phantoms were performed using a tube current modulation system for four DoseRight Indexes (DRI) (i.e., 26/23/20/15). Raw data were reconstructed using the Level 4 of iDose4 (i4) and three levels of AI-DLR (Smoother/Smooth/Standard) with a bone reconstruction kernel. The Noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed (d' modeled detection of a lytic and a sclerotic bone lesions). Image quality was subjectively assessed on an anthropomorphic phantom by two radiologists. RESULTS: The Noise magnitude was lower with AI-DLR than i4 and decreased from Standard to Smooth (-31 ± 0.1 [SD]%) and Smooth to Smoother (-48 ± 0.1 [SD]%). The average NPS spatial frequency was similar with i4 (0.43 ± 0.01 [SD] mm-1) and Standard (0.42 ± 0.01 [SD] mm-1) but decreased from Standard to Smoother (0.36 ± 0.01 [SD] mm-1). TTF values at 50% decreased as the dose decreased but were similar with i4 and all AI-DLR levels. For both simulated lesions, d' values increased from Standard to Smoother levels. Higher detectabilities were found with a DRI at 15 and Smooth and Smoother levels than with a DRI at 26 and i4. The images obtained with these dose and AI-DLR levels were rated satisfactory for clinical use by the radiologists. CONCLUSION: Using Smooth and Smoother levels with CT allows a significant dose reduction (up to 72%) with a high detectability of lytic and sclerotic bone lesions and a clinical overall image quality.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
16.
Eur Radiol ; 33(1): 699-710, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35864348

RESUMO

OBJECTIVES: To assess the impact of a new artificial intelligence deep-learning reconstruction (Precise Image; AI-DLR) algorithm on image quality against a hybrid iterative reconstruction (IR) algorithm in abdominal CT for different clinical indications. METHODS: Acquisitions on phantoms were performed at 5 dose levels (CTDIvol: 13/11/9/6/1.8 mGy). Raw data were reconstructed using level 4 of iDose4 (i4) and 3 levels of AI-DLR (Smoother/Smooth/Standard). Noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed: d' modelled detection of a liver metastasis (LM) and hepatocellular carcinoma at portal (HCCp) and arterial (HCCa) phases. Image quality was subjectively assessed on an anthropomorphic phantom by 2 radiologists. RESULTS: From Standard to Smoother levels, noise magnitude and average NPS spatial frequency decreased and the detectability (d') of all simulated lesions increased. For both inserts, TTF values were similar for all three AI-DLR levels from 13 to 6 mGy but decreased from Standard to Smoother levels at 1.8 mGy. Compared to the i4 used in clinical practice, d' values were higher using the Smoother and Smooth levels and close for the Standard level. For all dose levels, except at 1.8 mGy, radiologists considered images satisfactory for clinical use for the 3 levels of AI-DLR, but rated images too smooth using the Smoother level. CONCLUSION: Use of the Smooth and Smoother levels of AI-DLR reduces the image noise and improves the detectability of lesions and spatial resolution for standard and low-dose levels. Using the Smooth level is apparently the best compromise between the lowest dose level and adequate image quality. KEY POINTS: • Evaluation of the impact of a new artificial intelligence deep-learning reconstruction (AI-DLR) on image quality and dose compared to a hybrid iterative reconstruction (IR) algorithm. • The Smooth and Smoother levels of AI-DLR reduced the image noise and improved the detectability of lesions and spatial resolution for standard and low-dose levels. • The Smooth level seems the best compromise between the lowest dose level and adequate image quality.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Redução da Medicação , Inteligência Artificial , Imagens de Fantasmas , Algoritmos , Tomografia Computadorizada por Raios X/métodos
17.
Diagn Interv Imaging ; 104(4): 167-177, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36414506

RESUMO

Spectral computed tomography (CT) imaging encompasses a unique generation of CT systems based on a simple principle that makes use of the energy-dependent information present in CT images. Over the past two decades this principle has been expanded with the introduction of dual-energy CT systems. The first generation of spectral CT systems, represented either by dual-source or dual-layer technology, opened up a new imaging approach in the radiology community with their ability to overcome the limitations of tissue characterization encountered with conventional CT. Its expansion worldwide can also be considered as an important leverage for the recent groundbreaking technology based on a new chain of detection available on photon counting CT systems, which holds great promise for extending CT towards multi-energy CT imaging. The purpose of this article was to detail the basic principles and techniques of spectral CT with a particular emphasis on the newest technical developments of dual-energy and multi-energy CT systems.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Fótons
18.
Res Diagn Interv Imaging ; 5: 100025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39076162

RESUMO

Background: A nation-wide study recently published the dose reference levels for the main CT-guided interventional procedures in 5001 patients. We assessed the impact of patient's age, sex and targeted organ on the patient dose during thoracic and abdominopelvic biopsies and punctures/drainages. Patients and methods: Data were extracted from the previous nationwide study. All biopsies, punctures and drainages for thoracic or abdominopelvic locations performed between January 2017 and June 2019 in all participating centers were included in the study. Multivariable analyses were carried out using a linear regression of the dose-length product (DLP) log, adjusted to age, sex, anatomical location, number of helical acquisitions and inclusion center. Results: Of the 5001 patients of the initial study, 2383 benefited from thoracic or abdominopelvic procedures, including 674 percutaneous destructions excluded. 1709 patients (44 centers), 1045 men, 664 women, median age 64.4 ± 14.0 years were included. The mean DLP was 751.2 ± 642.7mGy.cm. It was significantly higher in men than women (p = 0.0005) and higher for abdominopelvic procedures than for thoracic locations (p<0.0001). Conclusion: Doses delivered to patients for abdominal and thoracic biopsies and punctures/drainages performed under CT guidance depend on gender and location. Furthers studies taking into account the patient's morphology and anatomical location of the procedure would allow proposing finer dose reference levels.

19.
J Pers Med ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294840

RESUMO

Background: This study aimed to retrospectively analyze dosimetric indicators recorded since 2012 for thoracic, abdominal or pelvic embolizations to evaluate the contribution of new tools and technologies in dose reduction. Methods: Dosimetric indicators (dose area product (DAP) and air kerma (AK)) from 1449 embolizations were retrospectively reviewed from August 2012 to March 2022. A total of 1089 embolizations were performed in an older fixed C-Arm system (A1), 222 in a newer fixed C-Arm system (A2) and 138 in a 4DCT system (A3). The embolization procedures were gathered to compare A1, A2 and A3. Results: DAP were significantly lower with A2 compared to A1 for all procedures (median −50% ± 5%, p < 0.05), except for uterine elective embolizations and gonadal vein embolization. The DAP values were significantly lower with A3 than with A1 (p < 0.001). CT scan was used for guidance in 90% of embolization procedures. Conclusions: The last C-Arm technology allowed a median reduction of 50% of the X-ray dose. The implementation of a CT scan inside the IR room allowed for more precise 3D-guidance with no increase of the dose delivered.

20.
J Clin Med ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893371

RESUMO

Screening programmes for cirrhotic patients are based on ultrasound (US) examinations at 6-month intervals, but a US sensitivity of 47% has recently been reported. The aim of this study was to evaluate a two-phase MDCT protocol in terms of hepatic nodule detection within a hepatocellular carcinoma (HCC) screening situation and to evaluate a reduction in irradiation dose for the 6-monthly checks compared to the classic four-phase protocol. In total, 373 patients with 498 nodules that were suspected to be HCC and ranged from 10 to 30 mm in size were prospectively included. All patients underwent four-phase MDCT with an unenhanced phase, arterial phase (AP), portal phase (PP) and delayed phase (DP). The cumulative irradiation from the repeated 6-monthly MDCT protocol was calculated. Of the 498 nodules, only 4 (0.008%) were only seen in the PP and not in the AP or AP. Of the 319 HCC nodules, 270 (84.6%) had AP hyperenhancement, while 115 had washout in the PP and 224 had washout in the DP. Overall, 222 of the 224 (99.1%) HCC nodules with typical features were seen in the AP and DP. The dose reduction was estimated at 55.4% when using the two-phase protocol (AP and DP). The cumulative irradiation of the two-phase protocol, which was performed every 6 months over 5 years, was 96.5 mSv. MDCT with the two-phase protocol could offer an alternative to ultrasound screening with an interesting risk-benefit trade-off.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA