Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(24): 248003, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639798

RESUMO

We analyze the surface tension exerted at the interface between an active fluid and a solid boundary in terms of tangential forces. Focusing on active systems known to possess an equation of state for the pressure, we show that interfacial forces are of a more complex nature. Using a number of macroscopic setups, we show that the surface tension is a combination of an equation-of-state abiding part and of setup-dependent contributions. The latter arise from generic setup-dependent steady currents which "dress" the measurement of the "bare" surface tension. The former shares interesting properties with its equilibrium counterpart, and can be used to generalize the Young-Laplace law to active systems. Finally, we show how a suitably designed probe can directly access this bare surface tension, which can also be computed using a generalized virial formula.

2.
Phys Rev Lett ; 106(18): 184501, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635090

RESUMO

A rivulet flowing down an inclined plane often does not follow a straight path, but starts to meander spontaneously. Here we show that this instability is the result of two key ingredients: fluid inertia and anisotropy of the friction between rivulet and substrate. Meandering only occurs if the motion normal to the instantaneous flow direction is more difficult than parallel to it. We give a quantitative criterion for the onset of meandering and confirm it by comparing to the flow of a rivulet between two glass plates which are wetted completely. Above the threshold, the rivulet follows an irregular pattern with a typical wavelength of a few cm.

3.
Phys Rev Lett ; 97(1): 018002, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16907409

RESUMO

Since Marco Polo it has been known that some sand dunes have the peculiar ability to emit a loud sound with a well-defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature. It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche, and not to an acoustic excitation of the grains but to their relative motion. By comparing singing dunes around the world and two controlled experiments, in the laboratory and the field, we prove that the frequency of the sound is the frequency of the relative motion of the sand grains. Sound is produced because moving grains synchronize their motions. The laboratory experiment shows that the dune is not needed for sound emission. A velocity threshold for sound emission is found in both experiments, and an interpretation is proposed.


Assuntos
Coloides/química , Modelos Teóricos , Música , Solo , Espectrografia do Som/métodos , Simulação por Computador , Movimento (Física) , Vibração
4.
Langmuir ; 22(7): 3186-91, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16548576

RESUMO

This article presents the first experimental study of an advancing contact line for a colloidal suspension. A competition between the hydrodynamic flow due to the drop velocity and the drying is exhibited: drying accounts for particle agglomeration that pins the contact line whereas the liquid flow dilutes the agglomerated particles and allows the contact line to advance continuously. The dilution dominates at low concentration and high velocity, but at high concentration and low velocity, the contact line can be pinned by the particle agglomeration, which leads to a stick-slip motion of the contact line. The calculation of the critical speed splitting both regimes gives an order of magnitude comparable to that of experiments. Moreover, a model of agglomeration gives an estimation of both the size of the wrinkles formed during stick-slip and the force exerted by the wrinkle on the contact line.

5.
Phys Rev Lett ; 94(2): 024503, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15698180

RESUMO

To probe the microscopic balance of forces close to a moving contact line, the boundary conditions around viscous drops sliding down an inclined plane are investigated. At first, the variation of the contact angle as a function of the scale of analysis is discussed. The dynamic contact angle is measured at a scale of 6 mum all around sliding drops for different volumes and speeds. We show that it depends only on the capillary number based on the local liquid velocity, measured by particle tracking. This velocity turns out to be normal to the contact line everywhere. It indirectly proves that, in comparison with the divergence involved in the normal direction, the viscous stress is not balanced by intermolecular forces in the direction tangential to the contact line, so that any motion in this last direction gets damped.

6.
J Colloid Interface Sci ; 269(1): 164-70, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14651909

RESUMO

An optical method for probing contact angle distribution along contact lines of any shape using a laser sheet is proposed. This method is applied to a dry patch formed inside a film flowing along an inclined plane, both liquid and solid being transparent. Falling normally to the plane, a laser sheet cuts the contact line and is moved along this line. Distortions of the sheet trace observed on a screen put below the plane allow us to extract the contact angle distribution and the local line inclination along the line. Our results show that the contact angle around a dry patch is nearly constant and equal to the static advancing angle, at least when the evolution of its shape is followed for increasing flow rates. This supports a model of dry patch shape recently proposed by Podgorski and co-workers. Preliminary results obtained for decreasing flow are also qualitatively observed.

7.
Artigo em Inglês | MEDLINE | ID: mdl-11138128

RESUMO

The dynamics of a macroscopic grain rolling on an inclined plane composed of fixed identical grains is investigated both experimentally and theoretically. As real sand, the system exhibits an hysteretic transition between static and dynamical states: for angles smaller than straight phi(d), the roller always stops, for angles larger than straight phi(s), it spontaneously starts rolling down. But for angles between straight phi(d) and straight phi(s), it can be either at rest or in motion with a constant velocity. It is shown that the limit velocity is given by the equilibrium between gravity driving and dissipation by the shocks. Moreover, the rough plane acts as a periodic potential trap whose width and depth decrease when the angle is increased: the static angle straight phi(s) corresponds to the angle for which the trap disappears; the dynamical angle straight phi(d) to that for which the limit velocity is sufficient to escape from the trap. Finally, a continuous description of the force globally acting on the grain is proposed, which preserves this hysteretic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA