Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38803525

RESUMO

Spectral computed tomography (CT) is a powerful diagnostic tool offering quantitative material decomposition results that enhance clinical imaging by providing physiologic and functional insights. Iodine, a widely used contrast agent, improves visualization in various clinical contexts. However, accurately detecting low-concentration iodine presents challenges in spectral CT systems, particularly crucial for conditions like pancreatic cancer assessment. In this study, we present preliminary results from our hybrid spectral CT instrumentation which includes clinical-grade hardware (rapid kVp-switching x-ray tube, dual-layer detector). This combination expands spectral datasets from two to four channels, wherein we hypothesize improved quantification accuracy for low-dose and low-iodine concentration cases. We modulate the system duty cycle to evaluate its impact on quantification noise and bias. We evaluate iodine quantification performance by comparing two hybrid weighting strategies alongside rapid kVp-switching. This evaluation is performed with a polyamide phantom containing seven iodine inserts ranging from 0.5 to 20 mg/mL. In comparison to alternative methodologies, the maximum separation configuration, incorporating data from both the 80 kVp, low photon energy detector layer and the 140 kVp, high photon energy detector layer produces spectral images containing low quantitative noise and bias. This study presents initial evaluations on a hybrid spectral CT system, leveraging clinical hardware to demonstrate the potential for enhanced precision and sensitivity in spectral imaging. This research holds promise for advancing spectral CT imaging performance across diverse clinical scenarios.

2.
J Med Imaging (Bellingham) ; 9(1): 014003, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127967

RESUMO

Purpose: Dual-contrast protocols are a promising clinical multienergy computed tomography (CT) application for focal liver lesion detection and characterization. One avenue to enable multienergy CT is the introduction of photon-counting detectors (PCD). Although clinical translation is highly desired because of the diagnostic benefits of PCDs, it will still be a decade or more before they are broadly available. In our work, we investigated an alternative solution that can be implemented on widely used conventional CT systems (single source and integrating detector) to perform multimaterial spectral decomposition for dual-contrast imaging. Approach: We propose to slowly alternate the x-ray tube voltage between 3 kVp levels so each kVp level covers a few degrees of gantry rotation. This leads to the challenge of sparsely sampled projection data in each energy level. Performing the material decomposition (MD) in the sinogram domain is not directly possible as the projection images of the three energy levels are not angularly aligned. In order to overcome this challenge, we developed a convolutional neural network (CNN) framework for sparse sinogram completion (SC) and MD. To evaluate the feasibility of the slow kVp switching scheme, simulation studies of an abdominal phantom, which included liver lesions, were conducted. Results: The line-integral SC network yielded sinograms with a pixel-wise RMSE < 0.05 of the line-integrals compared to the ground truth. This provided acceptable image quality up to a switching angle of 9 deg per kVp. The MD network we developed allowed us to differentiate iodine and gadolinium in the sinogram domain. The average relative quantification errors for iodine and gadolinium were below 10%. Conclusions: We developed a slow triple kVp switching data acquisition scheme and a CNN-based data processing pipeline. Results from a digital phantom validation illustrate the potential for future applications of dual-contrast agent protocols on practically available single-energy CT systems.

3.
Sci Rep ; 8(1): 17386, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478300

RESUMO

The purpose of this study was to investigate a preclinical spectral photon-counting CT (SPCCT) prototype compared to conventional CT for pulmonary imaging. A custom-made lung phantom, including nodules of different sizes and shapes, was scanned with a preclinical SPCCT and a conventional CT in standard and high-resolution (HR-CT) mode. Volume estimation was evaluated by linear regression. Shape similarity was evaluated with the Dice similarity coefficient. Spatial resolution was investigated via MTF for each imaging system. In-vivo rabbit lung images from the SPCCT system were subjectively reviewed. Evaluating the volume estimation, linear regression showed best results for the SPCCT compared to CT and HR-CT with a root mean squared error of 21.3 mm3, 28.5 mm3 and 26.4 mm3 for SPCCT, CT and HR-CT, respectively. The Dice similarity coefficient was superior for SPCCT throughout nodule shapes and all nodule sizes (mean, SPCCT: 0.90; CT: 0.85; HR-CT: 0.85). 10% MTF improved from 10.1 LP/cm for HR-CT to 21.7 LP/cm for SPCCT. Visual investigation of small pulmonary structures was superior for SPCCT in the animal study. In conclusion, the SPCCT prototype has the potential to improve the assessment of lung structures due to higher resolution compared to conventional CT.


Assuntos
Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Humanos , Modelos Lineares , Imagens de Fantasmas , Fótons , Coelhos
4.
Eur Radiol ; 28(8): 3318-3325, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29460069

RESUMO

OBJECTIVES: After endovascular aortic repair (EVAR), discrimination of endoleaks and intra-aneurysmatic calcifications within the aneurysm often requires multiphase computed tomography (CT). Spectral photon-counting CT (SPCCT) in combination with a two-contrast agent injection protocol may provide reliable detection of endoleaks with a single CT acquisition. METHODS: To evaluate the feasibility of SPCCT, the stent-lined compartment of an abdominal aortic aneurysm phantom was filled with a mixture of iodine and gadolinium mimicking enhanced blood. To represent endoleaks of different flow rates, the adjacent compartments contained either one of the contrast agents or calcium chloride to mimic intra-aneurysmatic calcifications. After data acquisition with a SPCCT prototype scanner with multi-energy bins, material decomposition was performed to generate iodine, gadolinium and calcium maps. RESULTS: In a conventional CT slice, Hounsfield units (HU) of the compartments were similar ranging from 147 to 168 HU. Material-specific maps differentiate the distributions within the compartments filled with iodine, gadolinium or calcium. CONCLUSION: SPCCT may replace multiphase CT to detect endoleaks without sacrificing diagnostic accuracy. It is a unique feature of our method to capture endoleak dynamics and allow reliable distinction from intra-aneurysmatic calcifications in a single scan, thereby enabling a significant reduction of radiation exposure. KEY POINTS: • SPCCT might enable advanced endoleak detection. • Material maps derived from SPCCT can differentiate iodine, gadolinium and calcium. • SPCCT may potentially reduce radiation burden for EVAR patients under post-interventional surveillance.


Assuntos
Aneurisma da Aorta Abdominal/cirurgia , Meios de Contraste , Endoleak/diagnóstico por imagem , Procedimentos Endovasculares/métodos , Fótons , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Gadolínio , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Stents
5.
Eur Radiol Exp ; 1(1): 25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29708205

RESUMO

BACKGROUND: To assess the feasibility of dual-contrast spectral photon-counting computed tomography (SPCCT) for liver imaging. METHODS: We present an SPCCT in-silico study for simultaneous mapping of the complementary distribution in the liver of two contrast agents (CAs) subsequently intravenously injected: a gadolinium-based contrast agent and an iodine-based contrast agent. Four types of simulated liver lesions with a characteristic arterial and portal venous pattern (haemangioma, hepatocellular carcinoma, cyst, and metastasis) are presented. A material decomposition was performed to reconstruct quantitative iodine and gadolinium maps. Finally, a multi-dimensional classification algorithm for automatic lesion detection is presented. RESULTS: Our simulations showed that with a single-scan SPCCT and an adapted contrast injection protocol, it was possible to reconstruct contrast-enhanced images of the liver with arterial distribution of the iodine-based CA and portal venous phase of the gadolinium-based CA. The characteristic patterns of contrast enhancement were visible in all liver lesions. The approach allowed for an automatic detection and classification of liver lesions using a multi-dimensional analysis. CONCLUSIONS: Dual-contrast SPCCT should be able to visualise the characteristic arterial and portal venous enhancement with a single scan, allowing for an automatic lesion detection and characterisation, with a reduced radiation exposure.

6.
Radiology ; 283(3): 723-728, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27918709

RESUMO

Purpose To investigate the feasibility of using spectral photon-counting computed tomography (CT) to differentiate between gadolinium-based and nonionic iodine-based contrast material in a colon phantom by using the characteristic k edge of gadolinium. Materials and Methods A custom-made colon phantom was filled with nonionic iodine-based contrast material, and a gadolinium-filled capsule representing a contrast material-enhanced polyp was positioned on the colon wall. The colon phantom was scanned with a preclinical spectral photon-counting CT system to obtain spectral and conventional data. By fully using the multibin spectral information, material decomposition was performed to generate iodine and gadolinium maps. Quantitative measurements were performed within the lumen and polyp to quantitatively determine the absolute content of iodine and gadolinium. Results In a conventional CT section, absorption values of both contrast agents were similar at approximately 110 HU. Contrast material maps clearly differentiated the distributions, with gadolinium solely in the polyp and iodine in the lumen of the colon. Quantitative measurements of contrast material concentrations in the colon and polyp matched well with those of actual prepared mixtures. Conclusion Dual-contrast spectral photon-counting CT colonography with iodine-filled lumen and gadolinium-tagged polyps may enable ready differentiation between polyps and tagged fecal material. © RSNA, 2016.


Assuntos
Colonografia Tomográfica Computadorizada , Colonografia Tomográfica Computadorizada/métodos , Meios de Contraste , Gadolínio , Compostos de Iodo , Imagens de Fantasmas , Fótons
7.
Med Phys ; 43(3): 1295-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936714

RESUMO

PURPOSE: An analytic Fourier approach to predict the expected number of counts registered in a photon-counting detector subject to pulse pile-up for arbitrary photon flux, detector response function, and pulse-shape is presented. The analysis provides a complete forward model for energy-sensitive, photon-counting x-ray detectors for spectral computed tomography. METHODS: The formalism of the stochastic theory of the expected frequency of level crossings of shot noise processes is applied to the pulse pile-up effect and build on a recently published analytic Fourier representation of the level crossing frequency of shot noise processes with piece-wise continuous kernels with jumps. RESULTS: The general analytic result is validated by a Monte Carlo simulation for pulses of the form g(t) = e(-t/τ) (t > 0) and a Gaussian detector response function. The Monte Carlo simulations are in excellent agreement with the analytic predictions of photon counts within the numerical accuracy of the calculations. CONCLUSIONS: The phenomenon of pulse pile-up is identified with the level-crossing problem of shot noise processes and an exact, analytic formula for the expected number of counts in energy-sensitive, photon-counting x-ray detectors for arbitrary photon flux, response function, and pulse-shapes is derived. The framework serves as a theoretical foundation for future works on pulse pile-up.


Assuntos
Análise de Fourier , Fótons , Radiometria/instrumentação , Método de Monte Carlo , Raios X
8.
Med Phys ; 42(4): 1959-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832086

RESUMO

PURPOSE: The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. METHODS: A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. RESULTS: The authors achieve a FOV of 160 × 196 mm consisting of two disjoint areas measuring 77 × 196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G0. Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. CONCLUSIONS: To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build.


Assuntos
Mamografia/instrumentação , Mamografia/métodos , Animais , Artefatos , Desenho de Equipamento , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Doses de Radiação , Dourada , Fatores de Tempo
9.
Philos Trans A Math Phys Eng Sci ; 372(2010): 20130033, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24470415

RESUMO

Research in grating-based differential phase-contrast imaging (DPCI) has gained increasing momentum in the past couple of years. The first results on the potential clinical benefits of the technique for X-ray mammography are becoming available and indicate improvements in terms of general image quality, the delineation of lesions versus the background tissue and the visibility of microcalcifications. In this paper, we investigate some aspects related to the technical feasibility of DPCI for human X-ray mammography. After a short introduction to state-of-the-art full-field digital mammography in terms of technical aspects as well as clinical aspects, we put together boundary conditions for DPCI. We then discuss the implications for system design in a comparative manner for systems with two-dimensional detectors versus slit-scanning systems, stating advantages and disadvantages of the two designs. Finally, focusing on a slit-scanning system, we outline a possible concept for phase acquisition.


Assuntos
Mamografia/métodos , Temperatura Alta , Humanos , Processamento de Imagem Assistida por Computador , Interferometria , Mamografia/instrumentação , Mastectomia , Movimento , Doses de Radiação , Intensificação de Imagem Radiográfica , Fatores de Tempo
10.
ACS Nano ; 7(11): 9761-70, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24127782

RESUMO

Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL with a range of diagnostically active nanocrystals or hydrophobic agents. We performed focused experiments on LDL labeled with gold nanocrystals (Au-LDL). The labeling procedure had minimal effect on LDL size, morphology, or composition. Biological function was found to be maintained from both in vitro and in vivo experiments. Tumor-bearing mice were injected intravenously with LDL, DiR-LDL, Au-LDL, or a gold-loaded nanoemulsion. LDL accumulation in the tumors was detected with whole-body imaging methods, such as computed tomography (CT), spectral CT, and fluorescence imaging. Cellular localization was studied with transmission electron microscopy and fluorescence techniques. This LDL labeling procedure should permit the study of lipoprotein biointeractions in unprecedented detail.


Assuntos
Ouro/química , Lipoproteínas LDL/química , Nanopartículas Metálicas/química , Nanopartículas/química , Animais , Carbocianinas/química , Colesterol/química , Feminino , Citometria de Fluxo , Células Hep G2 , Humanos , Melanoma Experimental , Camundongos , Camundongos Knockout , Camundongos Nus , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Transplante de Neoplasias , Fosfolipídeos/química , Tomografia Computadorizada por Raios X
11.
Rev Sci Instrum ; 82(7): 073106, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806171

RESUMO

We report on a new design of a vacuum ultra violet (VUV) lamp for direct optical excitation of high laying atomic states, e.g., for excitation of metastable rare gas atoms. The lamp can be directly mounted to ultra-high vacuum vessels (p ≤ 10(-10)mbar). It is driven by a 2.45 GHz microwave source. For optimum operation, it requires powers of ~20 W. The VUV light is transmitted through a magnesium fluoride window, which is known to have a decreasing transmittance for VUV photons with time. In our special setup, after a run-time of the VUV lamp of 550 h the detected signal continuously decreased to 25% of its initial value. This corresponds to a lifetime increase of two orders of magnitude compared to previous setups or commercial lamps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA