Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980126

RESUMO

The reaction of unsaturated compounds with ozone (O3) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, i.e. acetaldehyde oxide (CH3CHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.5 with a mixture of 1% crotonaldehyde, 10% O2, at an fixed ozone concentration of 1000 ppm and 89% Ar dilution. Molecular-beam mass spectrometry in conjunction with single photon tunable synchrotron vacuum-ultraviolet (VUV) radiation is used to identify elusive intermediates by means of experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Addition of ozone (1000 ppm) is observed to trigger the oxidation of CA already at 390 K, which is below the temperature where the oxidation reaction of CA was observed in the absence of ozone. The observed CA + O3 product, C4H6O4, is found to be linked to a ketohydroperoxide (2-hydroperoxy-3-oxobutanal) resulting from the isomerization of the primary ozonide. Products corresponding to the CIs uni- and bi-molecular reactions were observed and identified. A network of CI reactions is identified in the temperature region below 600 K, characterized by CIs bimolecular reactions with species like aldehydes, i.e., formaldehyde, acetaldehyde, and crotonaldehyde and alkenes, i.e., ethene and propene. The region below 600 K is also characterized by the formation of important amounts of typical low-temperature oxidation products, such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH), and ethyl hydroperoxide (C2H5OOH). Detection of additional oxygenated species such as alcohols, ketene, and aldehydes are indicative of multiple active oxidation routes. This study provides important information about the initial step involved in the CIs assisted oligomerization reactions in complex reactive environments where CIs with different functionalities are reacting simultaneously. It provides new mechanistic insights into ozone-assisted oxidation reactions of unsaturated aldehydes, which is critical for the development of improved atmospheric and combustion kinetics models.

2.
Chemosphere ; 326: 138421, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36935062

RESUMO

Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time. The flight took place on January 18, 2022 from Reims (France). The samples were subsequently analyzed by high-resolution mass spectrometry (Orbitrap) to specifically infer hundreds of organic components present in 4 different layers from the troposphere to the stratosphere (up to 20 km). Additional measurements of O3, CO, and aerosol concentrations a few hours before this flight took place to contextualize the sampling. After separating common species found on each filter that might be common to atmospheric layers or residuals for contaminations, we found that each sample yields significant differences in the number and size of organic species detected that should reflect the unique composition of atmospheric layers. While tropospheric samples yield significantly oxidized and saturated components, with carbon numbers below 30 that might be explained by complex organics chemistry from local and distant source emissions, the upper tropospheric and stratospheric samples were associated with increased carbon numbers (C > 30), with a significantly reduced unsaturation number for the stratosphere, that might be induced by strong UV radiations. The multimodal distributions of carbon numbers in chemical formulas observed between 15 and 20 km suggest that oligomerization and growth of organic molecules may take place in aged air masses of tropical origin that are known to carry organic compounds even several km above the tropopause where their lifetime significantly increases. In addition, the presence of organics may also reflect the extended influence of wildfires smoke injected during the spring and summer in the NH hemisphere before the in situ observations and their long-lifetime in the upper troposphere and stratosphere.


Assuntos
Atmosfera , Clima , Atmosfera/química , Raios Ultravioleta , Estações do Ano , Aerossóis
3.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848575

RESUMO

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

4.
J Phys Chem A ; 126(48): 9087-9096, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416259

RESUMO

Low-temperature experiments on the oxidation of limonene-O2-N2 mixtures were conducted in a jet-stirred reactor (JSR) over a range of temperatures (520-800 K) under fuel-lean conditions (equivalence ratio φ = 0.5) with a short residence time (1.5 s) and a pressure of 1 bar. Collected samples of the reaction mixtures were analyzed by (i) online Fourier transform infrared spectroscopy (FTIR) and (ii) Orbitrap Q-Exactive high-resolution mass spectrometry after direct injection or chromatographic separation using reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) and soft ionization (with positive or negative heated electrospray ionization and atmospheric-pressure chemical ionization). H/D exchange using deuterated water (D2O) and a reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH) were performed to probe the presence of OH, OOH, and C═O groups in the oxidized products. A broad range of oxidation products ranging from water to highly oxygenated products containing five and more O atoms were detected (C7H10O4,5, C8H12O2,4, C8H14O2,4, C9H12O, C9H14O1,3-5, C10H12O2, C10H14O1-9, C10H16O2-5, and C10H18O6). Mass spectrometry analyses were only qualitative, and quantification was performed with FTIR. The results are discussed in terms of reaction routes involving the initial formation of peroxy radicals, H atom transfer, and O2 addition sequences producing a large set of chemical products, including ketohydroperoxides and more oxygenated products. Carbonyl compounds derived from the Waddington oxidation mechanism on exo- and endo-double bonds (C═C) were observed in addition to their products of further oxidation. Products of the Korcek mechanism (carboxylic acids and carbonyls) were also detected.


Assuntos
Terpenos , Limoneno , Espectrometria de Massas
5.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895936

RESUMO

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

6.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885760

RESUMO

In the present study, we investigated the oxidation of 2500 ppm of di-n-butyl ether under fuel-rich conditions (φ = 2) at low temperatures (460-780 K), a residence time of 1 s, and 10 atm. The experiments were carried out in a fused silica jet-stirred reactor. Oxidation products were identified and quantified in gas samples by gas chromatography and Fourier transform infrared spectrometry. Samples were also trapped through bubbling in cool acetonitrile for high-pressure liquid chromatography (HPLC) analyses. 2,4-dinitro-phenylhydrazine was used to derivatize carbonyl products and distinguish them from other isomers. HPLC coupled to high resolution mass spectrometry (Orbitrap Q-Exactive®) allowed for the detection of oxygenated species never observed before, i.e., low-temperature oxidation products (C8H12O4,6, C8H16O3,5,7, and C8H18O2,5) and species that are more specific products of atmospheric oxidation, i.e., C16H34O4, C11H24O3, C11H22O3, and C10H22O3. Flow injection analyses indicated the presence of high molecular weight oxygenated products (m/z > 550). These results highlight the strong similitude in terms of classes of oxidation products of combustion and atmospheric oxidation, and through autoxidation processes. A kinetic modeling of the present experiments indicated some discrepancies with the present data.

7.
Proc Natl Acad Sci U S A ; 114(50): 13102-13107, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183984

RESUMO

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

8.
J Phys Chem A ; 120(40): 7890-7901, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27641828

RESUMO

This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015 , 119 , 7361 - 7374 ] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450-1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

9.
J Phys Chem A ; 119(28): 7361-74, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25695304

RESUMO

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF.

10.
J Phys Chem A ; 119(10): 2006-15, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25686032

RESUMO

In the current study, the heterogeneous reaction of NO2 with soot and biosoot surfaces was investigated in the dark and under illumination relevant to atmospheric conditions (J(NO2) = 0.012 s(-1)). A flat-flame burner was used for preparation and collection of soot samples from premixed flames of liquid fuels. The biofuels were prepared by mixing 20% v/v of (i) 1-butanol (CH3(CH2)3OH), (ii) methyl octanoate (CH3(CH2)6COOCH3), (iii) anhydrous diethyl carbonate (C2H5O)2CO and (iv) 2,5 dimethyl furan (CH3)2C4H2O additive compounds in conventional kerosene fuel (JetA-1). Experiments were performed at 293 K using a low-pressure flow tube reactor (P = 9 Torr) coupled to a quadrupole mass spectrometer. The initial and steady-state uptake coefficients, γ0 and γ(ss), respectively, as well as the surface coverage, N(s), were measured under dry and humid conditions. Furthermore, the branching ratios of the gas-phase products NO (∼80-100%) and HONO (<20%) were determined. Soot from JetA-1/2,5-dimethyl furan was the most reactive [γ0 = (29.1 ± 5.8) × 10(-6), γ(ss)(dry) = (9.09 ± 1.82) × 10(-7) and γ(ss)(5.5%RH) = (14.0 ± 2.8)(-7)] while soot from JetA-1/1-butanol [γ0 = (2.72 ± 0.544) × 10(-6), γ(ss)(dry) = (4.57 ± 0.914) × 10(-7), and γ(ss)(5.5%RH) = (3.64 ± 0.728) × 10(-7)] and JetA-1/diethyl carbonate [γ0 = (2.99 ± 0.598) × 10(-6), γ(ss)(dry) = (3.99 ± 0.798) × 10(-7), and γ(ss)(5.5%RH) = (4.80 ± 0.960) × 10(-7)] were less reactive. To correlate the chemical reactivity with the physicochemical properties of the soot samples, their chemical composition was analyzed employing Raman spectroscopy, NMR, and high-performance liquid chromatography. In addition, the Brunauer-Emmett-Teller adsorption isotherms and the particle size distributions were determined employing a Quantachrome Nova 2200e gas sorption analyzer. The analysis of the results showed that factors such as (i) soot mass collection rate, (ii) porosity of the particles formed, (iii) aromatic fraction, and (iv) pre-existence of nitro-containing species in soot samples (formed during the combustion process) can be used as indicators of soot reactivity with NO2.


Assuntos
Biocombustíveis , Dióxido de Nitrogênio/química , Processos Fotoquímicos , Fuligem/química , Propriedades de Superfície , Cinética , Modelos Moleculares , Conformação Molecular , Porosidade
11.
J Phys Chem A ; 119(28): 7138-44, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25354027

RESUMO

There has been evidence lately that several endophytic fungi can convert lignocellulosic biomass into ketones among other oxygenated compounds. Such compounds could prove useful as biofuels for internal combustion engines. Therefore, their combustion properties are of high interest. Cyclohexanone was identified as an interesting second-generation biofuel ( Boot , M. ; et al. Cyclic Oxygenates: A New Class of Second-Generation Biofuels for Diesel Engines? Energy Fuels 2009 , 23 , 1808 - 1817 ; Klein-Douwel , R. J. H. ; et al. Soot and Chemiluminescence in Diesel Combustion of Bio-Derived, Oxygenated and Reference Fuels . Proc. Combust. Inst. 2009 , 32 , 2817 - 2825 ). However, until recently ( Serinyel , Z. ; et al. Kinetics of Oxidation of Cyclohexanone in a Jet- Stirred Reactor: Experimental and Modeling . Proc. Combust. Inst. 2014 ; DOI: 10.1016/j.proci.2014.06.150 ), no previous studies on the kinetics of oxidation of that fuel could be found in the literature. In this work, we present the first theoretical kinetic study of the unimolecular decomposition pathways of cyclohexanone, a cyclic ketone that could demonstrate important fuel potential. Using the quantum composite G3B3 method, we identified six different decomposition pathways for cyclohexanone and computed the corresponding rate constants. The rate constants were calculated using the G3B3 method coupled with Rice-Ramsperger-Kassel-Marcus theory in the temperature range of 800-2000 K. Our calculations show that the kinetically more favorable channel for thermal decomposition is pathway 2 that produces 1,3-butadien-2-ol, which in turn can isomerize easily to methyl vinyl ketone through a small barrier. The results presented here can be used in a future kinetic combustion mechanism.

12.
J Am Chem Soc ; 136(47): 16689-94, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25381864

RESUMO

For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.

13.
J Phys Chem A ; 118(34): 7007-16, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25101870

RESUMO

In the current study, the photochemistry of pyrene on solid Al2O3 surface was studied under simulated atmospheric conditions (pressure, 1 atm; temperature, 293 K; photon flux, JNO2 = 0.002-0.012 s(-1)). Experiments were performed using synthetic air or N2 as bath gas to evaluate the impact of O2 to the reaction system. The rate of pyrene photodegradation followed first order kinetics and was enhanced in the presence of O2, kd(synthetic air) = 7.8 ± 0.78 × 10(-2) h(-1) and kd(N2) = 1.2 ± 0.12 × 10(-2) h(-1) respectively, due to the formation of the highly reactive O2(•-) and HO(•) radical species. In addition, kd was found to increase linearly with photon flux. A detailed product study was realized and for the first time the gas/solid phase products of pyrene oxidation were identified using off-line GC-MS and HPLC analysis. In the gas phase, acetone, benzene, and various benzene-ring compounds were determined. In the solid phase, more than 20 photoproducts were identified and their kinetics was followed. Simulation of the concentration profiles of 1- and 2-hydroxypyrene provided an estimation of their yields, 33% and 5.8%, respectively, with respect to consumed pyrene, and their degradation rates were extracted. Finally, the mechanism of heterogeneous photodegradation of pyrene is discussed.

14.
J Phys Chem A ; 117(48): 12897-911, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24188183

RESUMO

The heterogeneous reactions between trace gases and aerosol surfaces have been widely studied over the past decades, revealing the crucial role of these reactions in atmospheric chemistry. However, existing knowledge on the reactivity of mixed aerosols is limited, even though they have been observed in field measurements. In the current study, the heterogeneous interaction of NO2 with solid surfaces of Al2O3 covered with kerosene soot was investigated under dark conditions and in the presence of UV light. Experiments were performed at 293 K using a low-pressure flow-tube reactor coupled with a quadrupole mass spectrometer. The steady-state uptake coefficient, γ(ss), and the distribution of the gas-phase products were determined as functions of the Al2O3 mass; soot mass; NO2 concentration, varied in the range of (0.2-10) × 10(12) molecules cm(-3); photon flux; and relative humidity, ranging from 0.0032% to 32%. On Al2O3/soot surfaces, the reaction rate was substantially increased, and the formation of HONO was favored compared with that on individual pure soot and pure Al2O3 surfaces. Uptake of NO2 was enhanced in the presence of H2O under both dark and UV irradiation conditions, and the following empirical expressions were obtained: γ(ss,BET,dark) = (7.3 ± 0.9) × 10(-7) + (3.2 ± 0.5) × 10(-8) × RH and γ(ss,BET,UV) = (1.4 ± 0.2) × 10(-6) + (4.0 ± 0.9) × 10(-8) × RH. Specific experiments, with solid sample preheating and doping with polycyclic aromatic hydrocarbons (PAHs), showed that UV-absorbing organic compounds significantly affect the chemical reactivity of the mixed mineral/soot surfaces. A mechanistic scheme is proposed, in which Al2O3 can either collect electrons, initiating a sequence of redox reactions, or prevent the charge-recombination process, extending the lifetime of the excited state and enhancing the reactivity of the organics. Finally, the atmospheric implications of the observed results are briefly discussed.


Assuntos
Óxido de Alumínio/química , Atmosfera/química , Dióxido de Nitrogênio/química , Fuligem/química , Raios Ultravioleta , Propriedades de Superfície
15.
Combust Flame ; 160(11)2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24273333

RESUMO

The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6-1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820-1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work.

16.
Talanta ; 81(1-2): 265-74, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188919

RESUMO

A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min).

17.
Chemosphere ; 78(11): 1342-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20116827

RESUMO

Here we report a new, efficient and reliable analytical methodology for sensitive and selective quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in soot samples. The methodology developed is based on ultrasonic extraction of the soot-bound PAHs into small volumes of acetonitrile, purification of the extracts through C(18) Solid Phase Extraction (SPE) cartridges and analysis by Reverse Phase Liquid Chromatography (RPLC) with UV and fluorimetric detection. For the first time, we report the convenience of adapting the SPE procedure to the nature of the soot samples. As a matter of fact, extracts containing high percentage of unpolar material are recommended to be cleaned with acetone, whereas extracts poor in unpolar compounds can be efficiently cleaned with methanol. The method was satisfactorily applied to kerosene and bio-kerosene soot from atmospheric open diffusion flames (pool fires) and premixed flames achieving Quantification and Detection limits in the range ng mg(-1) soot and recoveries about 90% for most of the PAHs studied.


Assuntos
Cromatografia de Fase Reversa/métodos , Querosene/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Extração em Fase Sólida/métodos , Fuligem/análise , Limite de Detecção , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Ultrassom
18.
J Phys Chem A ; 114(11): 3788-95, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19694476

RESUMO

Thermochemical data were computed for numerous species needed for performing detailed chemical kinetic modeling of biodiesel thermal decomposition and combustion. Most of these data concerning large species had not been experimentally determined. A B3LYP/6-31G(d,p) method using the atomization approach derived earlier was used to provide these data. The presently computed thermochemical data are provided in the CHEMKIN-NASA format as Supporting Information. Species considered are fatty acid methyl esters (FAMEs), various oxygenated radicals formed from FAMEs by C-H, C-C, and C-O bond breakings and subsequent chemistries, 1-, 2-, 3-, and 5-saturated alkyl radicals, monounsaturated 1-alkyl radicals, among others.


Assuntos
Biocombustíveis , Ésteres/química , Ácidos Graxos/química , Metano/química , Simulação por Computador , Estrutura Molecular , Termodinâmica
19.
Phys Chem Chem Phys ; 9(31): 4230-44, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17687472

RESUMO

The mutual sensitization of the oxidation of NO and a CH(4)-C(2)H(6) (10 : 1) simulated natural gas (NG) blend was studied under fuel lean conditions (Phi = 0.5) at 50 atm and 1000-1500 K in the UIC high pressure shock tube (HPST). New experimental results were also obtained for the mutual sensitization of methane and the NG blend in the CNRS jet stirred reactor (JSR) at 10 atm. A detailed chemical kinetic model was assembled to describe the observed changes in reactivity in the CH(4) and NG blends, with and without NO, in the HPST and the JSR. The data and the validated model (tested against a variety of targets) show a reduced difference of reactivity between methane and NG blends in the presence of NO at characteristic reaction times for the JSR (250-1000 micros). However the HPST data and subsequent simulations using the validated model have revealed that at higher pressures and in the millisecond time scale regime representative of the HPST experiments (and practical combustion devices) there still persists a significant difference in reactivity between methane and NG blends in the presence of NO. The experimental data, the model development and validations and its predictions and utility as a tool to probe the NO-hydrocarbon sensitization effects under practical combustion conditions is discussed.


Assuntos
Físico-Química/instrumentação , Físico-Química/métodos , Etano/química , Óxido Nítrico/química , Oxigênio/química , Química/métodos , Desenho de Equipamento , Gases , Hidrocarbonetos/química , Cinética , Metano/química , Modelos Químicos , Modelos Teóricos , Pressão , Temperatura
20.
J Phys Chem A ; 111(19): 3992-4000, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17253673

RESUMO

The kinetics of oxidation of kerosene Jet A-1 and a kerosene/rapeseed oil methyl ester (RME) mixture (80/20, mol/mol) (biokerosene) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 740-1200 K, and for variable equivalence ratios (0.5-1.5). Concentration profiles of the reactants, stable intermediates, and final products were obtained by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of these fuels in these conditions was modeled using a detailed kinetic reaction mechanism consisting of 2027 reversible reactions and 263 species. The surrogate biokerosene model fuel used here consisted of a mixture of n-hexadecane, n-propylcyclohexane, n-propylbenzene, and n-decane, where the long-chain methyl ester fraction was simply represented by n-hexadecane. The proposed kinetic reaction mechanism used in the modeling yielded a good representation of the kinetics of oxidation of kerosene and biokerosene under jet-stirred reactor conditions and of kerosene in a premixed flame. The data and the model showed the biokerosene (Jet A-1/RME mixture) has a slightly higher reactivity than Jet A-1, whereas no major modification of the product distribution was observed besides the formation of small unsaturated methyl esters produced from RME's oxidation. The model predicts no difference in the ignition delays of kerosene and biokerosene. Using the proposed kinetic scheme, the formation of potential soot precursors was studied with particular attention.


Assuntos
Fontes Geradoras de Energia , Modelos Químicos , Óleos de Plantas/química , Alcanos/química , Alcanos/metabolismo , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos Monoinsaturados , Hidrocarbonetos/química , Querosene , Cinética , Oxirredução , Óleos de Plantas/metabolismo , Óleo de Brassica napus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA