Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979360

RESUMO

The progressive decline of CD8 T cell effector function-also known as terminal exhaustion-is a major contributor to immune evasion in cancer. Yet, the molecular mechanisms that drive CD8 T cell dysfunction remain poorly understood. Here, we report that the Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid 2-related factor 2 (NRF2) signaling axis, which mediates cellular adaptations to oxidative stress, directly regulates CD8 T cell exhaustion. Transcriptional profiling of dysfunctional CD8 T cells from chronic infection and cancer reveals enrichment of NRF2 activity in terminally exhausted (Texterm) CD8 T cells. Increasing NRF2 activity in CD8 T cells (via conditional deletion of KEAP1) promotes increased glutathione production and antioxidant defense yet accelerates the development of terminally exhausted (PD-1+TIM-3+) CD8 T cells in response to chronic infection or tumor challenge. Mechanistically, we identify PTGIR, a receptor for the circulating eicosanoid prostacyclin, as an NRF2-regulated protein that promotes CD8 T cell dysfunction. Silencing PTGIR expression restores the anti-tumor function of KEAP1-deficient T cells. Moreover, lowering PTGIR expression in CD8 T cells both reduces terminal exhaustion and enhances T cell effector responses (i.e. IFN-γ and granzyme production) to chronic infection and cancer. Together, these results establish the KEAP1-NRF2 axis as a metabolic sensor linking oxidative stress to CD8 T cell dysfunction and identify the prostacyclin receptor PTGIR as an NRF2-regulated immune checkpoint that regulates CD8 T cell fate decisions between effector and exhausted states.

2.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616051

RESUMO

Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.


Assuntos
Melanoma , Peroxissomos , Humanos , Peroxissomos/metabolismo , Metabolismo dos Lipídeos , Melanoma/genética , Ceramidas/farmacologia , Ceramidas/metabolismo
4.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
5.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

6.
RNA Biol ; 20(1): 186-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37095747

RESUMO

Here, we provide an in-depth analysis of the usefulness of single-sample metabolite/RNA extraction for multi-'omics readout. Using pulverized frozen livers of mice injected with lymphocytic choriomeningitis virus (LCMV) or vehicle (Veh), we isolated RNA prior (RNA) or following metabolite extraction (MetRNA). RNA sequencing (RNAseq) data were evaluated for differential expression analysis and dispersion, and differential metabolite abundance was determined. Both RNA and MetRNA clustered together by principal component analysis, indicating that inter-individual differences were the largest source of variance. Over 85% of LCMV versus Veh differentially expressed genes were shared between extraction methods, with the remaining 15% evenly and randomly divided between groups. Differentially expressed genes unique to the extraction method were attributed to randomness around the 0.05 FDR cut-off and stochastic changes in variance and mean expression. In addition, analysis using the mean absolute difference showed no difference in the dispersion of transcripts between extraction methods. Altogether, our data show that prior metabolite extraction preserves RNAseq data quality, which enables us to confidently perform integrated pathway enrichment analysis on metabolomics and RNAseq data from a single sample. This analysis revealed pyrimidine metabolism as the most LCMV-impacted pathway. Combined analysis of genes and metabolites in the pathway exposed a pattern in the degradation of pyrimidine nucleotides leading to uracil generation. In support of this, uracil was among the most differentially abundant metabolites in serum upon LCMV infection. Our data suggest that hepatic uracil export is a novel phenotypic feature of acute infection and highlight the usefulness of our integrated single-sample multi-'omics approach.


Assuntos
Metabolômica , Viroses , Animais , Camundongos , Análise de Sequência de RNA , Fígado , RNA
7.
Cell Metab ; 34(9): 1298-1311.e6, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981545

RESUMO

How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.


Assuntos
Linfócitos T CD8-Positivos , Carbono , Linfócitos T CD8-Positivos/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Nutrientes
8.
Autophagy ; 18(3): 540-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34074205

RESUMO

Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer.Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.


Assuntos
Autofagia , Melanoma , ATPases Associadas a Diversas Atividades Celulares/genética , Autofagia/genética , Resistência a Medicamentos , Ácidos Graxos/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Oncogene ; 39(18): 3650-3665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132651

RESUMO

The BRAFV600E mutation occurs in more than 50% of cutaneous melanomas, and results in the constitutive activation of the mitogen-activated protein kinases (MAPK) pathway. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) are downstream effectors of the activated MAPK pathway, and important molecular targets in invasive and metastatic cancer. Despite the well-known role of MNK1 in regulating mRNA translation, little is known concerning the impact of its aberrant activation on gene transcription. Here, we show that changes in the activity, or abundance, of MNK1 result in changes in the expression of pro-oncogenic and pro-invasive genes. Among the MNK1-upregulated genes, we identify Angiopoietin-like 4 (ANGPTL4), which in turn promotes an invasive phenotype via its ability to induce the expression of matrix metalloproteinases (MMPs). Using a pharmacologic inhibitor of MNK1/2, SEL201, we demonstrate that BRAFV600E-mutated cutaneous melanoma cells are reliant on MNK1/2 for invasion and lung metastasis.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/patologia , Camundongos , Mutação/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma/genética , Melanoma Maligno Cutâneo
10.
Biochim Biophys Acta Rev Cancer ; 1870(1): 103-121, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30012421

RESUMO

Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.


Assuntos
Neoplasias/metabolismo , Peroxissomos/metabolismo , Antineoplásicos/farmacologia , Autofagia , Carcinogênese , Humanos , Neoplasias/imunologia , Biogênese de Organelas , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Peroxissomos/imunologia , Espécies Reativas de Oxigênio/metabolismo
11.
Cell Death Differ ; 24(11): 1912-1924, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731463

RESUMO

Peroxisomes are a critical rheostat of reactive oxygen species (ROS), yet their role in drug sensitivity and resistance remains unexplored. Gene expression analysis of clinical lymphoma samples suggests that peroxisomes are involved in mediating drug resistance to the histone deacetylase inhibitor (HDACi) Vorinostat (Vor), which promotes ROS-mediated apoptosis. Vor augments peroxisome numbers in cultured lymphoma cells, concomitant with increased levels of peroxisomal proteins PEX3, PEX11B, and PMP70. Genetic inhibition of peroxisomes, using PEX3 knockdown, reveals that peroxisomes protect lymphoma cells against Vor-mediated cell death. Conversely, Vor-resistant cells were tolerant to elevated ROS levels and possess upregulated levels of (1) catalase, a peroxisomal antioxidant, and (2) plasmalogens, ether glycerophospholipids that represent peroxisome function and serve as antioxidants. Catalase knockdown induces apoptosis in Vor-resistant cells and potentiates ROS-mediated apoptosis in Vor-sensitive cells. These findings highlight the role of peroxisomes in resistance to therapeutic intervention in cancer, and provide a novel modality to circumvent drug resistance.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Linfoma/patologia , Peroxissomos/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Ácidos Hidroxâmicos/farmacologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vorinostat
12.
Oncotarget ; 8(19): 31199-31214, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28415719

RESUMO

Post-translational mechanisms regulating cell-matrix adhesion turnover during cell locomotion are not fully elucidated. In this study, we uncovered an essential role of Y118 site-specific tyrosine phosphorylation of paxillin, an adapter protein of focal adhesion complexes, in paxillin recruitment to autophagosomes to trigger turnover of peripheral focal adhesions in human breast cancer cells. We demonstrate that the Rab-7 GTPase is a key upstream regulator of late endosomal sorting of tyrosine118-phosphorylated paxillin, which is subsequently recruited to autophagosomes via the cargo receptor c-Cbl. Essentially, this recruitment involves a direct and selective interaction between Y118-phospho-paxillin, c-Cbl, and LC3 and is independent from c-Cbl E3 ubiquitin ligase activity. Interference with the Rab7-paxillin-autophagy regulatory network using genetic and pharmacological approaches greatly impacted focal adhesion stability, cell locomotion and progression to metastasis using a panel of human breast cancer cells. Together, these results provide novel insights into the requirement of phospho-site specific post-translational mechanism of paxillin for autophagy targeting to regulate cell-matrix adhesion turnover and cell locomotion in breast cancer cells.


Assuntos
Autofagossomos/metabolismo , Neoplasias da Mama/metabolismo , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Paxilina/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Autofagia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Proteínas Associadas aos Microtúbulos , Metástase Neoplásica , Fosforilação , Ligação Proteica , Proteólise , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
13.
J Invest Dermatol ; 135(5): 1368-1376, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25615552

RESUMO

In eukaryotic cells, the rate-limiting component for cap-dependent mRNA translation is the translation initiation factor eIF4E. eIF4E is overexpressed in a variety of human malignancies, but whether it has a role in melanoma remains obscure. We hypothesized that eIF4E promotes melanoma cell proliferation and facilitates the development of acquired resistance to the BRAF inhibitor vemurafenib. We show that eIF4E is overexpressed in a panel of melanoma cell lines, compared with immortalized melanocytes. Knockdown of eIF4E significantly repressed the proliferation of a subset of melanoma cell lines. Moreover, in BRAF(V600E) melanoma cell lines, vemurafenib inhibits 4E-BP1 phosphorylation, thus promoting its binding to eIF4E. Cap-binding and polysome profiling analysis confirmed that vemurafenib stabilizes the eIF4E-4E-BP1 association and blocks mRNA translation, respectively. Conversely, in cells with acquired resistance to vemurafenib, there is an increased dependence on eIF4E for survival; 4E-BP1 is highly phosphorylated and thus eIF4E-4E-BP1 associations are impeded. Moreover, increasing eIF4E activity by silencing 4E-BP1/2 renders vemurafenib-responsive cells more resistant to BRAF inhibition. In conclusion, these data suggest that therapeutically targeting eIF4E may be a viable means of inhibiting melanoma cell proliferation and overcoming vemurafenib resistance.


Assuntos
Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/fisiologia , Indóis/farmacologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas B-raf , RNA Interferente Pequeno/farmacologia , Vemurafenib
14.
Mol Pharmacol ; 85(4): 576-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24431147

RESUMO

Darinaparsin (Dar; ZIO-101; S-dimethylarsino-glutathione) is a promising novel organic arsenical currently undergoing clinical studies in various malignancies. Dar consists of dimethylarsenic conjugated to glutathione (GSH). Dar induces more intracellular arsenic accumulation and more cell death than the FDA-approved arsenic trioxide (ATO) in vitro, but exhibits less systemic toxicity. Here, we propose a mechanism for Dar import that might explain these characteristics. Structural analysis of Dar suggests a putative breakdown product: dimethylarsino-cysteine (DMAC). We show that DMAC is very similar to Dar in terms of intracellular accumulation of arsenic, cell cycle arrest, and cell death. We found that inhibition of γ-glutamyl-transpeptidase (γ-GT) protects human acute promyelocytic leukemia cells (NB4) from Dar, but not from DMAC, suggesting a role for γ-GT in the processing of Dar. Overall, our data support a model where Dar, a GSH S-conjugate, is processed at the cell surface by γ-GT, leading to formation of DMAC, which is imported via xCT, xAG, or potentially other cystine/cysteine importing systems. Further, we propose that Dar induces its own import via increased xCT expression. These mechanisms may explain the enhanced toxicity of Dar toward cancer cells compared with ATO.


Assuntos
Antineoplásicos/metabolismo , Arsenicais/metabolismo , Glutationa/análogos & derivados , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Trióxido de Arsênio , Arsenicais/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Cisteína/análogos & derivados , Cisteína/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Óxidos/farmacologia , Compostos de Sulfidrila/metabolismo , gama-Glutamiltransferase/metabolismo
15.
Biopolymers ; 91(11): 953-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19603494

RESUMO

Riboswitch regulation of gene expression requires ligand-mediated RNA folding. From the fluorescence lifetime distribution of bound 2-aminopurine ligand, we resolve three RNA conformers (C(o), C(i), C(c)) of the liganded G- and A-sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg(2+), together with results from mutagenesis, suggest that C(o) and C(i) are partially unfolded species compromised in key loop-loop interactions present in the fully folded C(c). These data verify that the ligand-bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand-mediated folding of the G-sensing riboswitch is more effective, less dependent on Mg(2+), and less debilitated by mutation, than the A-sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence-dependent RNA dynamics, which adjust the balance of ligand-mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine-tuning of gene regulatory mechanisms.


Assuntos
Ligantes , Conformação de Ácido Nucleico , Purinas/metabolismo , RNA Bacteriano/química , RNA Mensageiro/química , Regiões 5' não Traduzidas/genética , Aptâmeros de Nucleotídeos/genética , Bacillus subtilis/genética , Sequência de Bases , Genes Bacterianos , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , UDPglucose 4-Epimerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA