Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 337: 122535, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696329

RESUMO

Aerosol optical properties were studied over Chisinau in Moldova, one of the longest running AERONET sites in Eastern Europe. During two decades (September 1999-November 2018), the mean aerosol optical depth (AOD) and Angstrom exponent (AE) were observed as 0.21 ± 0.13 and 1.49 ± 0.29, respectively. The highest AOD (0.24 ± 0.13) and AE (1.60 ± 0.26) were observed during the summer. More than half (∼55%) of the share was occupied by clean continental aerosols with seasonal order of winter (74.8%) > autumn (62%) > spring (48.9%) > summer (44.8%) followed by mixed aerosols with a respective contribution of 30.7% (summer), 28.4% (spring), 22.5 (autumn) and 16.4% (winter). A clear dominance of volume size distribution in the fine mode indicated the stronger influence of anthropogenic activities resulting in fine aerosol load in the atmosphere. The peak in the fine mode was centered at 0.15 µm, whereas that of the coarse mode was centered either at 3.86 µm (summer and autumn) or 5.06 µm (spring and winter). 'Extreme' aerosol events were observed during 21 days with a mean AOD (AE) of 0.99 ± 0.32 (1.43 ± 0.43), whereas 'strong' events were observed during 123 days with a mean AOD (AE) of 0.57 ± 0.07 (1.44 ± 0.40), mainly influenced by anthropogenic aerosols (during 19 and 101 days of each event type) from urban/industrial and biomass burning indicated by high AE and fine mode fraction. During the whole period (excluding events days), the fine and coarse mode peaks were observed at the radius of 0.15 and 5.06 µm, which in the case of extreme (strong) events were at 0.19 (0.15) and 3.86 (2.24) µm respectively. The fine mode volume concentration was 4.78 and 3.32 times higher, whereas the coarse mode volume concentration was higher by a factor of 1.98 and 2.27 during extreme and strong events compared to the whole period.


Assuntos
Poluentes Atmosféricos , Tecnologia de Sensoriamento Remoto , Moldávia , Monitoramento Ambiental/métodos , Europa Oriental , Aerossóis/análise , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA