RESUMO
BACKGROUND: Fibrinogen-related protein 1 (frep1) is a member of the pattern-recognizing receptor family (PRR) which generates an innate immune response after recognizing the pattern associated molecular pattern (PAMP) that occurs on the surface of microorganisms. The main objective of this study is to characterize frep1 and its in-silico analysis in Anopheles stephensi. METHODS AND RESULT: The DNA was extracted from female Anopheles stephensi. PCR was performed for complete analysis of frep1 using specific primers. The gene sequence of frep1 was identified by Sanger sequencing. The bioinformatics structure analysis approach revealed the presence of 3 exons and 4 introns in the frep1. The sequence of frep1 was submitted to NCBI GeneBank with accession number ON817187.1. Quantitative real-time PCR was performed to analyze frep1 expression. At the developmental stage, frep1 is highly expressed in the L1 stage, egg, and adult female mosquito. In addition, frep1 is highly expressed in the tissue fat body, midgut, and salivary gland. After blood-fed, an upregulation of frep1 at 48 h in the midgut, and downregulation in fat body were observed at different time intervals. CONCLUSION: The genomic data of frep1 is encoded by 12,443 bp. The frep1 has a significant role in the early metamorphosis. Its expression in fat body and midgut suggests it could be important for fat metabolism and post-blood digestion. The conserved domain could be targeted for vector control. Further study is required to elucidate its function against malaria parasites to confirm its agonist role in malaria transmission.
Assuntos
Anopheles , Proteínas de Insetos , Malária , Mosquitos Vetores , Anopheles/genética , Anopheles/metabolismo , Animais , Mosquitos Vetores/genética , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Malária/parasitologia , Simulação por Computador , Fibrinogênio/metabolismo , Fibrinogênio/genética , Filogenia , Imunidade Inata/genética , Sequência de AminoácidosRESUMO
Malaria is a major public health concern. The development of parasite-based vaccine RTS/AS01 has some therapeutic value but its lower efficacy is one of the major limitations. Mosquito-based transmission-blocking vaccines could have a higher potential for parasite inhibition within the mosquitoes. Several genes of mosquito midgut, salivary gland, hemolymph, etc. get activate in response to the Plasmodium-infected blood and helps in parasite invasion directly or indirectly inside the mosquito. The studies of such genes provided a new insight into developing the more efficient vaccines. In the field of malaria genetics research, RNAi has become an innovative strategy used to identify mosquito candidate genes for transmission-blocking vaccines. This review targeted the gene studies that have been conducted in the period 2000-2023 in different malaria vectors against different malarial parasites using the RNAi approach to reveal mosquito novel gene candidates for vaccine development.
Assuntos
Anopheles , Vacinas Antimaláricas , Malária , Mosquitos Vetores , Interferência de RNA , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/genética , Anopheles/parasitologia , Anopheles/genética , Malária/prevenção & controle , Malária/transmissão , Humanos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/genéticaRESUMO
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Assuntos
Aedes , Culex , Dengue , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Febre Amarela/genética , Interferência de RNA , Ecossistema , Controle de Mosquitos/métodos , Infecção por Zika virus/genética , Dengue/genética , Culex/genéticaRESUMO
Background: A number of mosquito-borne viruses (MBVs), such as dengue virus (DENV), zika virus (ZIKV), chikungunya (CHIKV), West Nile virus (WNV), and yellow fever virus (YFV) exert adverse health impacts on the global population. Aedes aegypti and Aedes albopictus are the prime vectors responsible for the transmission of these viruses. The viruses have acquired a number of routes for successful transmission, including horizontal and vertical transmission. Transovarial transmission is a subset/type of vertical transmission adopted by mosquitoes for the transmission of viruses from females to their offspring through eggs/ovaries. It provides a mechanism for these MBVs to persist and maintain their lineage during adverse climatic conditions of extremely hot and cold temperatures, during the dry season, or in the absence of susceptible vertebrate host when horizontal transmission is not possible. Methods: The publications discussed in this systematic review were searched for using the PubMed, Scopus, and Web of Science databases, and websites such as those of the World Health Organization (WHO) and the European Centre for Disease Prevention and Control, using the search terms "transovarial transmission" and "mosquito-borne viruses" from 16 May 2023 to 20 September 2023. Results: A total of 2,391 articles were searched, of which 123 were chosen for full text evaluation, and 60 were then included in the study after screening and removing duplicates. Conclusion: The present systematic review focuses on understanding the above diseases, their pathogenesis, epidemiology and host-parasite interactions. The factors affecting transovarial transmission, potential implications, mosquito antiviral defense mechanism, and the control strategies for these mosquito-borne viral diseases (MBVDs) are also be included in this review.
Assuntos
Aedes , Doenças Transmitidas por Mosquitos , Animais , Feminino , Humanos , Aedes/virologia , Mosquitos Vetores/virologia , Doenças Transmitidas por Mosquitos/transmissão , Doenças Transmitidas por Mosquitos/virologiaRESUMO
OBJECTIVES: We verified subnational (state/union territory (UT)/district) claims of achievements in reducing tuberculosis (TB) incidence in 2020 compared with 2015, in India. DESIGN: A community-based survey, analysis of programme data and anti-TB drug sales and utilisation data. SETTING: National TB Elimination Program and private TB treatment settings in 73 districts that had filed a claim to the Central TB Division of India for progress towards TB-free status. PARTICIPANTS: Each district was divided into survey units (SU) and one village/ward was randomly selected from each SU. All household members in the selected village were interviewed. Sputum from participants with a history of anti-TB therapy (ATT), those currently experiencing chest symptoms or on ATT were tested using Xpert/Rif/TrueNat. The survey continued until 30 Mycobacterium tuberculosis cases were identified in a district. OUTCOME MEASURES: We calculated a direct estimate of TB incidence based on incident cases identified in the survey. We calculated an under-reporting factor by matching these cases within the TB notification system. The TB notification adjusted for this factor was the estimate by the indirect method. We also calculated TB incidence from drug sale data in the private sector and drug utilisation data in the public sector. We compared the three estimates of TB incidence in 2020 with TB incidence in 2015. RESULTS: The estimated direct incidence ranged from 19 (Purba Medinipur, West Bengal) to 1457 (Jaintia Hills, Meghalaya) per 100 000 population. Indirect estimates of incidence ranged between 19 (Diu, Dadra and Nagar Haveli) and 788 (Dumka, Jharkhand) per 100 000 population. The incidence using drug sale data ranged from 19 per 100 000 population in Diu, Dadra and Nagar Haveli to 651 per 100 000 population in Centenary, Maharashtra. CONCLUSION: TB incidence in 1 state, 2 UTs and 35 districts had declined by at least 20% since 2015. Two districts in India were declared TB free in 2020.
Assuntos
Monitoramento Epidemiológico , Tuberculose , Erradicação de Doenças , Humanos , Incidência , Índia/epidemiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/prevenção & controleRESUMO
COVID-19 is a respiration-related disease caused by SARS-CoV-2 and was identified in China's Wuhan city. More than 223 countries are affected by the disease worldwide. The new variants of the COVID-19 virus are causing problems, from average to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Presently, there are 170 vaccine candidates, out of which 10 have been approved by the WHO for vaccination, such as Ad26.COV2.S, Pfizer/BioNTech, COVISHIELD, Covovax, Moderna, KoviVac, and some other vaccines to combat the deadly SARS-CoV-2 infection. From all these vaccines, Pfizer/BioNTech and Moderna are showing the highest efficacy against COVID-19. These vaccines are highly efficient against COVID-19 disease, but their potentiality against new variants remains a question. COVID-19 vaccines are highly effective at preventing severe illnesses, hospitalizations, and death. The antibodies elicited by earlier infection or vaccination are the key for possible protection against SARS-CoV-2. The problem has been exacerbated by new information from Africa on the origins of the novel contagious SARS-CoV-2 strain. These new strains occur due to unique mutations in the spike protein, which modify SARS-CoV-2 transmission and infection capabilities, limiting the efficacy of the COVID-19 vaccination. Hence, there is a need to find a potential vaccine against it.
RESUMO
Zika virus disease is a great concern in different parts of the world, and it has become a Public Health Emergency of International Concern. The global pandemic of ZIKV in 2015 prompted concern among scientific community. Zika is a flavivirus of the family Flaviviridae transmitted by mosquitoes. Natural vertical transmission is an ecological strategy that arboviruses adopt to ensure their survival inside the mosquito vector during harsh conditions or interepidemic periods when horizontal transmission is difficult. ZIKV is vertically transmitted from infected females to its offspring. This review has concluded various studies regarding the vertical transmission ability of different mosquito species for ZIKV. Previously Aedes aegypti was considered to be a major vector, however Aedes albopictus and Culex quinquifasciatus are discovered to have the similar vertical transmission potential. Different studies shown that natural vertical transmission has been detected in mosquito species which are not implicated as possible vectors. It leads to the possibility that many other mosquito species may be potential ZIKV vectors.
Assuntos
Aedes , Culex , Infecção por Zika virus , Zika virus , Animais , Feminino , Mosquitos VetoresRESUMO
Retinoids are essential in balancing proliferation, differentiation and apoptosis, and they exert their effects through retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RARß is a tumor-suppressor gene silenced by epigenetic mechanisms such as DNA methylation in breast, cervical and non-small cell lung cancers. An increased expression of RARß has been associated with improved breast cancer-specific survival. The PAH2 domain of the scaffold protein SIN3A interacts with the specific Sin3 Interaction Domain (SID) of several transcription factors, such as MAD1, bringing chromatin-modifying proteins such as histone deacetylases, and it targets chromatin for specific modifications. Previously, we have established that blocking the PAH2-mediated Sin3A interaction with SID-containing proteins using SID peptides or small molecule inhibitors (SMI) increased RARß expression and induced retinoic acid metabolism in breast cancer cells, both in in vitro and in vivo models. Here, we report studies designed to understand the mechanistic basis of RARß induction and function. Using human breast cancer cells transfected with MAD1 SID or treated with the MAD SID peptide, we observed a dissociation of MAD1, RARα and RARß from Sin3A in a coimmunoprecipitation assay. This was associated with increased RARα and RARß expression and function by a luciferase assay, which was enhanced by the addition of AM580, a specific RARα agonist; EMSA showed that MAD1 binds to E-Box, similar to MYC, on the RARß promoter, which showed a reduced enrichment of Sin3A and HDAC1 by ChIP and was required for the AM580-enhanced RARß activation in MAD1/SID cells. These data suggest that the Sin3A/HDAC1/2 complex co-operates with the classical repressors in regulating RARß expression. These data suggest that SIN3A/MAD1 acts as a second RARß repressor and may be involved in fine-tuning retinoid sensitivity.
Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Receptores do Ácido Retinoico , Complexo Correpressor Histona Desacetilase e Sin3 , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina , Feminino , Humanos , Receptores do Ácido Retinoico/metabolismo , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genéticaRESUMO
SIN3A, a scaffold protein has regulatory functions in tumor biology. Through its Paired amphipathic helix (PAH2) domain, SIN3A interacts with PHF12 (PF1), a protein with SIN3 interaction domain (SID) that forms a complex with MRG15 and KDM5A/B. These components are often overexpressed in cancer. In the present study, we evaluated the role of SIN3A and its interacting partner PF1 in mediating inhibition of tumor growth and invasion in triple negative breast cancer (TNBC). We found profound inhibition of invasion, migration, and induction of cellular senescence by specific disruption of the PF1/SIN3A PAH2 domain interaction in TNBC cells expressing PF1-SID transcript or peptide treatment. Genome-wide transcriptomic analysis by RNA-seq revealed that PF1-SID downregulates several gene sets and pathways linked to invasion and migration. Integrin α6 (ITGA6) and integrin ß1 (ITGB1) and their downstream target proteins were downregulated in PF1-SID cells. We further determined increased presence of SIN3A and transcriptional repressor, KLF9, on promoters of ITGA6 and ITGB1 in PF1-SID cells. Knockdown of KLF9 leads to re-expression of ITGA6 and ITGB1 and restoration of the invasive phenotype, functionally linking KLF9 to this process. Overall, these data demonstrate that specific disruption of PF1/SIN3A, inhibits tumor growth, migration, and invasion. Also, PF1-SID not only inhibits tumor growth by senescence induction and reduced proliferation, but it also targets cancer stem cell gene expression and blocks mammosphere formation. Overall, these data demonstrate a mechanism whereby invasion and metastasis of TNBC can be suppressed by inhibiting SIN3A-PF1 interaction and enhancing KLF9 mediated suppression of ITGA6 and ITGB1.
RESUMO
Epidemiological evidence suggests that cadmium (Cd) is one of the causative factors of prostate cancer, but the effect of Cd on benign prostatic hyperplasia (BPH) remains unclear. This study aimed to determine whether Cd exposure could malignantly transform BPH1 cells and, if so, to dissect the mechanism of action. We deciphered the molecular signaling responsible for BPH1 transformation via RNA-sequencing and determined that Cd induced the expression of zinc finger of the cerebellum 2 (ZIC2) in BPH1 cells. We noted Cd exposure increased ZIC2 expression in the Cd-transformed BPH1 cells that in turn promoted anchorage-independent spheroids and increased expression of stem cell drivers, indicating their role in stem cell renewal. Subsequent silencing of ZIC2 expression in transformed cells inhibited spheroid formation, stem cell marker expression, and tumor growth in nude mice. At the molecular level, ZIC2 interacts with the glioma-associated oncogene family (GLI) zinc finger 1 (GLI1), which activates prosurvival factors (nuclear factor NFκB, B-cell lymphoma-2 (Bcl2), as well as an X-linked inhibitor of apoptosis protein (XIAP)) signaling in Cd-exposed BPH1 cells. Conversely, overexpression of ZIC2 in BPH1 cells caused spheroid formation confirming the oncogenic function of ZIC2. ZIC2 activation and GLI1 signaling induction by Cd exposure in primary BPH cells confirmed the clinical significance of this oncogenic function. Finally, human BPH specimens had increased ZIC2 versus adjacent healthy tissues. Thus, we report direct evidence that Cd exposure induces malignant transformation of BPH via activation of ZIC2 and GLI1 signaling.
RESUMO
Chemopreventive effects and associated mechanisms of withaferin A (WA) against intestinal and colon carcinogenesis remain unknown. We investigated the chemopreventive effect of WA on transgenic adenomatous polyposis coli (APCMin/+) mouse and chemically induced azoxymethane/dextran sodium sulfate (AOM/DSS) models of intestinal and colon carcinogenesis. Oral WA administration (4 and 3 mg/kg) inhibited tumor initiation and progression of intestinal polyps formation in APCMin/+ mice and colon carcinogenesis in the AOM/DSS mouse model. WA-administered mice showed a significant reduction in both number [duodenum, 33% (P > 0.05); jejunum, 32% (P < 0.025); ileum, 43% ( P < 0.001); and colon 59% (P < 0.01] and size of polyps in APCMin/+ mice compared with the respective controls. Similarly, tumor multiplicity was significantly reduced (P < 0.05) in the colon of WA-administered AOM/DSS mice. Pathological analysis showed reduced adenomas and tissue inflammation in WA-administered mouse models. Molecular studies suggested that WA inhibited the expression of inflammatory (interluekin-6, tumor necrosis factor-alpha and cyclooxygenase-2), pro-survival (pAKT, Notch1 and NF-κB) markers in APCMin/+ and AOM/DSS models. The results suggest that WA is a potent agent for preventing colon carcinogenesis and further investigation is required to show clinical utility of the agent.
Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Inflamação/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Quimioprevenção/métodos , Colo/patologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Androgen ablation therapy is the primary therapeutic option for locally advanced and metastatic castration-resistant prostate cancer (CRPC). We investigated therapeutic effect of a dietary metabolite Urolithin A (UroA) and dissected the molecular mechanism in CRPC cells. Treatment with UroA inhibited cell proliferation in both androgen receptor-positive (AR+ ) (C4-2B) and androgen receptor-negative (AR- ) (PC-3) cells however, AR+ CaP cells were more sensitive to UroA treatment as compared with AR- CaP cells. Inhibition of the AR signaling was responsible for the UroA effect on AR+ CaP cells. Ectopic expression of AR in PC-3 cells sensitized them to UroA treatment as compared to the vector-expresseing PC-3 cells, which suggests that AR could be a target of UroA. Similarly, in enzalutamide-resistant C4-2B cells, a downregulation of AR expression also suppressed cell proliferation which was observed with the UroA treatment. Oral administration of UroA significantly suppressed the growth of C4-2B xenografts (P = 0.05) compared with PC-3 xenografts (P = 0.069) without causing toxicity to animals. Immunohistochemistry analysis confirmed in vitro findings such as downregulation of AR/pAKT signaling in UroA-treated C4-2B tumors, which suggests that UroA may be a potent chemo-preventive and therapeutic agent for CRPC.
Assuntos
Proliferação de Células/efeitos dos fármacos , Cumarínicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genéticaRESUMO
BACKGROUND: NeemAzal® (NA) is a quantified extract from seed kernels of neem, Azadirachta indica A.Juss. (Meliaceae), with a wide spectrum of biological properties, classically ascribed to its limonoid content. NA contains several azadirachtins (A to L), azadirachtin A (AzaA) being its main constituent. AzaA has been shown to inhibit microgamete formation of the rodent malaria parasite Plasmodium berghei, and NA was found to completely inhibit the transmission of Plasmodium berghei to Anopheles stephensi mosquitoes when administered to gametocytemic mice at a corresponding AzaA dose of 50mg/kg before exposure to mosquitoes. PURPOSE: The present study was aimed at i) assessing the pharmacodynamics and duration of action of NA and AzaA against P. berghei exflagellation in systemic circulation in mice and ii) elucidating the transmission blocking activity (TBA) of the main NA constituents. STUDY DESIGN: The NA and AzaA pharmacodynamics on exflagellation were assessed through ex vivo exflagellation assays, while TBA of NA constituents was evaluated through in vitro ookinete development assay. METHODS: Pharmacodynamics experiments: Peripheral blood from P. berghei infected BALB/c mice with circulating mature gametocytes, were treated i.p. with 50mg/kg and 100mg/kg pure AzaA and with NeemAzal® (Trifolio-M GmbH) at the corresponding AzaA concentrations. The effect magnitude and duration of action of compounds was estimated by counting exflagellation centers, formed by microgametocytes in process of releasing flagellated gametes, at various time points after treatment in ex vivo exflagellation tests. Ookinete Development Assay: The direct effects of NeemAzal® and AzaA on ookinete development were measured by fluorescence microscopy after incubation of gametocytemic blood with various concentrations of test substances in microplates for 24h. RESULTS: The exflagellation tests revealed an half-life of NA anti-plasmodial compounds of up to 7h at a NA dose corresponding to 100mg/kg equivalent dose of AzaA. The ookinete development assay showed an increased activity of NA against early sporogonic stages compared to that of AzaA. The IC50 value determined for NA was 6.8µg/ml (CI95: 5.95-7.86), about half of the AzaA IC50 (12.4µg/ml; CI95: 11.0-14.04). CONCLUSION: The stronger activity of NA, when compared to AzaA, could not be explained by an additive or synergistic effect by other azadirachtins (B, D and I) present in NA. In fact, the addition of these compounds at 50µM concentration to AzaA did not evidence any decrease of the IC50 against early sporogonic stages to that obtained with AzaA alone. It is likely that other non-limonoid compounds present in NA may contribute to AzaA activity and enhanced pharmacodynamics against exflagellation both in vitro and in vivo.
Assuntos
Antiprotozoários/farmacologia , Azadirachta/química , Limoninas/farmacologia , Malária/parasitologia , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Animais , Anopheles , Linhagem Celular , Feminino , Humanos , Malária/transmissão , Camundongos Endogâmicos BALB C , Sementes/químicaRESUMO
INTRODUCTION: The recent emergence of resistance, toxicity paradigm and limited efficacy of conventional antifungal drugs necessitate the identification of de novo targets in fungal metabolism. One of the most critical physiological processes during in vivo pathogenesis is maintenance of iron homeostasis. The most life threatening opportunistic human fungal pathogens like Aspergillus, Candida and Cryptococcus exploit the siderophore mediated iron uptake mechanism either for survival, virulence, propagation or resistance to oxidative stress envisaged in vivo during infection. Areas covered: In this review, we will highlight the metabolic pathways; specifically siderophore biosynthesis, uptake and utilisation, triggered in the fungal pathogens in iron starving conditions and the various putative targets viable in these pathways to be recruited as novel therapeutic antidotes either via biosynthetic enzymes catalytic site inhibitors or as drug conjugates through trojan horse approach and further role in the development of fungal specific reliable diagnostic markers. Expert opinion: Siderophores are the weapons released by a pathogen to conquer the battle for iron acquisition. Hence, the fungal siderophore biosynthetic pathways along with their uptake and utilisation mechanisms represent an ideal target for pathogen specific, host friendly therapeutic strategy which would block the proliferation of parasite without causing any harm to the mammalian host.
Assuntos
Antifúngicos/farmacologia , Ferro/metabolismo , Sideróforos/metabolismo , Animais , Desenho de Fármacos , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Sideróforos/biossínteseRESUMO
BACKGROUND: Medicinal plants are a validated source for discovery of new leads and standardized herbal medicines. The aim of this study was to assess the activity of Vernonia amygdalina leaf extracts and isolated compounds against gametocytes and sporogonic stages of Plasmodium berghei and to validate the findings on field isolates of Plasmodium falciparum. METHODS: Aqueous (Ver-H2O) and ethanolic (Ver-EtOH) leaf extracts were tested in vivo for activity against sexual and asexual blood stage P. berghei parasites. In vivo transmission blocking effects of Ver-EtOH and Ver-H2O were estimated by assessing P. berghei oocyst prevalence and density in Anopheles stephensi mosquitoes. Activity targeting early sporogonic stages (ESS), namely gametes, zygotes and ookinetes was assessed in vitro using P. berghei CTRPp.GFP strain. Bioassay guided fractionation was performed to characterize V. amygdalina fractions and molecules for anti-ESS activity. Fractions active against ESS of the murine parasite were tested for ex vivo transmission blocking activity on P. falciparum field isolates. Cytotoxic effects of extracts and isolated compounds vernolide and vernodalol were evaluated on the human cell lines HCT116 and EA.hy926. RESULTS: Ver-H2O reduced the P. berghei macrogametocyte density in mice by about 50% and Ver-EtOH reduced P. berghei oocyst prevalence and density by 27 and 90%, respectively, in An. stephensi mosquitoes. Ver-EtOH inhibited almost completely (>90%) ESS development in vitro at 50 µg/mL. At this concentration, four fractions obtained from the ethylacetate phase of the methanol extract displayed inhibitory activity >90% against ESS. Three tested fractions were also found active against field isolates of the human parasite P. falciparum, reducing oocyst prevalence in Anopheles coluzzii mosquitoes to one-half and oocyst density to one-fourth of controls. The molecules and fractions displayed considerable cytotoxicity on the two tested cell-lines. CONCLUSIONS: Vernonia amygdalina leaves contain molecules affecting multiple stages of Plasmodium, evidencing its potential for drug discovery. Chemical modification of the identified hit molecules, in particular vernodalol, could generate a library of druggable sesquiterpene lactones. The development of a multistage phytomedicine designed as preventive treatment to complement existing malaria control tools appears a challenging but feasible goal.
Assuntos
Antimaláricos/farmacologia , Malária/transmissão , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Vernonia/química , Animais , Anopheles/parasitologia , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Malária/prevenção & controle , Masculino , Camundongos , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidadeRESUMO
The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads.
Assuntos
Antimaláricos/farmacologia , Ionóforos/farmacologia , Piranos/farmacologia , Antimaláricos/efeitos adversos , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ionóforos/efeitos adversos , Estrutura Molecular , Monensin/efeitos adversos , Monensin/farmacologia , Nigericina/efeitos adversos , Nigericina/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Piranos/efeitos adversosRESUMO
BACKGROUND: Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. METHODS: Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. RESULTS: A dose and frequency dependent impact of NeemAzal treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 - 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. CONCLUSIONS: The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties.
Assuntos
Anopheles/fisiologia , Antimaláricos/farmacologia , Azadirachta/química , Insetos Vetores/fisiologia , Limoninas/farmacologia , Malária/transmissão , Animais , Anopheles/efeitos dos fármacos , Sangue , Feminino , Humanos , Insetos Vetores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Oviposição , Extratos Vegetais/farmacologiaRESUMO
Fecundity, bloodmeal size, and survival are among the most important parameters in the overall fitness of mosquitoes. Impact of an intervention that affects fecundity can be assessed by directly counting the eggs laid by exposed mosquitoes, which is usually done manually. We have developed a macroinstruction, which can be used to count thousands of Anopheles stephensi Liston eggs in a few minutes, to provide an alternative and adaptable method to egg counting as a measure of fecundity. The macro was developed using a scanner and a computer running AxioVision Rel. 4.8 software, a freely accessible software compatible with Windows XP/7/Vista. Using this semiautomated method, it is possible to reduce time, avoid human error and bias, and obtain improved consistency in studies measuring mosquito fecundity.
Assuntos
Anopheles , Insetos Vetores , Controle de Mosquitos/métodos , Animais , Feminino , Fertilidade , Camundongos , Camundongos Endogâmicos BALB C , Controle de Mosquitos/instrumentação , Contagem de Ovos de Parasitas/instrumentação , Contagem de Ovos de Parasitas/métodosRESUMO
Widespread and common across much of the drier areas of western Africa, the woody shrub Guiera senegalensis (Combretaceae) is the sole member of its genus. Similarly widespread is Vuilletia houardi, a thrips species that induces galls on this shrub, and is recorded from Mali, Senegal, Gambia and northern Nigeria (Pitkin & Mound 1973). Moreover, large numbers of galls, together with their included thrips, have now been studied from Burkina Faso. Some galls (Figs 1, 2) are invaded by Senegathrips coutini, a species whose biology is not known but that is possibly a predator. Moreover, Liothrips africana also sometimes breeds within these galls, but is possibly using these only as a convenient shelter. A re-description and line-drawings of V. houardi was provided by zur Strassen (1958), but no modern diagnosis of this genus, nor of Senegathrips, is available, the objective here being to provide formal diagnoses for these two monotypic genera.