Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Endocr Pathol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388031

RESUMO

Pituitary neuroendocrine tumors (PitNET) that metastasize comprise ~ 0.2% of adenohypophyseal tumors are aggressive and are challenging to treat. However, many non-metastatic tumors are also aggressive. Herein, we review 21 specimens from 13 patients at UCSF with metastatic PitNETs (CSF or systemic, N = 7 patients), high-grade pituitary neuroendocrine neoplasms (HG-PitNEN, N = 4 patients), and/or PitNETs with sarcomatous transformation (PitNET-ST, N = 5 patients). We subtyped cases using the World Health Organization (WHO) and International Agency for Research on Cancer (IARC) criteria for neuroendocrine neoplasms (NENs). Lineage subtypes included acidophil stem cell, null cell, thyrotroph, corticotroph, lactotroph, and gonadotroph tumors. The median Ki-67 labeling index was 25% (range 5-70%). Lack of p16 was seen in 3 cases, with overexpression in 2. Strong diffuse p53 immunopositivity was present in 3 specimens from 2 patients. Loss of Rb expression was seen in 2 cases, with ATRX loss in one. Molecular analysis in 4 tumors variably revealed TERT alterations, homozygous CDKN2A deletion, aneuploidy, and mutations in PTEN, TP53, PDGFRB, and/or PIK3CA. Eight patients (62%) died of disease, 4 were alive at the last follow-up, and 1 was lost to the follow-up. All primary tumors had worrisome features, including aggressive lineage subtype, high mitotic count, and/or high Ki-67 indices. Additional evidence of high-grade progression included immunohistochemical loss of neuroendocrine, transcription factor, and/or hormone markers. We conclude that metastatic PitNET is not the only high-grade form of pituitary NEN. If further confirmed, these histopathologic and/or molecular features could provide advanced warning of biological aggressiveness and be applied towards a future grading scheme.

2.
Acta Neuropathol Commun ; 12(1): 143, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228008

RESUMO

Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.


Assuntos
Proteína EWS de Ligação a RNA , Neoplasias Supratentoriais , Fatores de Transcrição , Humanos , Neoplasias Supratentoriais/genética , Neoplasias Supratentoriais/patologia , Feminino , Proteína EWS de Ligação a RNA/genética , Masculino , Fatores de Transcrição/genética , Criança , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Pré-Escolar , Adolescente , Adulto , Proteínas de Ligação a DNA/genética , Adulto Jovem , Diferenciação Celular , Proteínas de Fusão Oncogênica/genética , Epêndima/patologia , Rearranjo Gênico/genética , Proteínas Cromossômicas não Histona/genética
3.
bioRxiv ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39211284

RESUMO

Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, we develop engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples revealed the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.

4.
Neuro Oncol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212325

RESUMO

Meningiomas are the most frequent primary intracranial tumors. Hence, they constitute a major share of diagnostic specimens in neuropathology practice. The 2021 WHO Classification of Central Nervous System Tumors ("CNS5") has introduced the first molecular grading parameters for meningioma with oncogenic variants in the TERT promoter and homozygous deletion of CDKN2A/B as markers for CNS WHO grade 3. However, after publication of the new classification volume, clarifications were requested, not only on novel but also on long-standing questions in meningioma grading that were beyond the scope of the WHO "blue book". In addition, more recent research into possible new molecular grading parameters could not yet be implemented in the 2021 classification but constitute a compelling body of literature. Hence, the cIMPACT-NOW Steering Committee convened a working group to provide such clarification and assess the evidence of possible novel molecular criteria. As a result, this cIMPACT-NOW update provides guidance for more standardized morphological evaluation and interpretation, most prominently pertaining to brain invasion, identifies scenarios in which advanced molecular testing is recommended, proposes to assign CNS WHO grade 2 for cases with CNS WHO grade 1 morphology but chromosomal arm 1p deletion in combination with 22q deletion and/or NF2 oncogenic variants, and discusses areas in which the current evidence is not yet sufficient to result in new recommendations.

5.
Acta Neuropathol Commun ; 12(1): 117, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014393

RESUMO

Papillary tumor of the pineal region (PTPR) is an uncommon tumor of the pineal region with distinctive histopathologic and molecular characteristics. Experience is limited with respect to its molecular heterogeneity and clinical characteristics. Here, we describe 39 new cases and combine these with 37 previously published cases for a cohort of 76 PTPR's, all confirmed by methylation profiling. As previously reported, two main methylation groups were identified (PTPR-A and PTPR-B). In our analysis we extended the subtyping into three subtypes: PTPR-A, PTPR-B1 and PTPR-B2 supported by DNA methylation profile and genomic copy number variations. Frequent loss of chromosome 3 or 14 was found in PTPR-B1 tumors but not in PTPR-B2. Examination of clinical outcome showed that nearly half (14/30, 47%) of examined patients experienced tumor progression with significant difference among the subtypes (p value = 0.046). Our analysis extends the understanding of this uncommon but distinct neuroepithelial tumor by describing its molecular heterogeneity and clinical outcomes, including its tendency towards tumor recurrence.


Assuntos
Metilação de DNA , Glândula Pineal , Pinealoma , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Pinealoma/genética , Pinealoma/patologia , Adolescente , Adulto Jovem , Criança , Glândula Pineal/patologia , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pré-Escolar , Variações do Número de Cópias de DNA
6.
World Neurosurg X ; 23: 100312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497058

RESUMO

Calcifying pseudoneoplasms of the neuraxis (CAPNON) are rare, non-neoplastic, slow-growing tumors that can present anywhere throughout the central nervous system. While the etiology of these lesions remains unknown, the mainstay of treatment is surgical excision. We describe a case of CAPNON at our institution in a 66 year-old female patient who presented with 5 months of pain and burning sensation in her thigh. On MRI, an intradural extramedullary lesion was identified at the level of T11-T12. The mass was surgically excised and the patient reported resolution of her symptoms by her six week follow-up appointment. We reviewed 79 spinal CAPNON cases, covering all cases reported in the literature thus far. In summary, we find that spinal CAPNON are most commonly lumbar and extradural in location, with pain as the most common presenting symptom. Lesions are well-defined and hypointense on T1 and T2 MRI sequence. The majority of cases had favorable surgical outcomes with near complete resolution of pain and associated symptoms.

7.
Cureus ; 16(1): e51614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38313959

RESUMO

We present a case of an adult patient experiencing progressive visual loss. An initial presentation was concerning for neuromyelitis optica with optic chiasm involvement. However, persistent contrast enhancement observed in follow-up brain and orbit images raised suspicion for optic tract malignant neoplasm. Histopathological evolution of optic nerve biopsy confirmed the diagnosis of an optic chiasm glioma. The patient was then referred to oncology for chemotherapy.

8.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066314

RESUMO

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Assuntos
Calcineurina , Doença de Huntington , Humanos , Idoso , Calcineurina/genética , Doença de Huntington/genética , Envelhecimento/genética , Fatores de Transcrição/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
9.
J Neurosurg Pediatr ; 32(3): 351-357, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327147

RESUMO

OBJECTIVE: Tuberous sclerosis is a rare genetic condition caused by TSC1 or TSC2 mutations that can be inherited, sporadic, or the result of somatic mosaicism. Subependymal giant-cell astrocytoma (SEGA) is a major diagnostic feature of tuberous sclerosis complex (TSC). This study aimed to present a series of cases in which a pathological diagnosis of SEGA was not diagnostic of tuberous sclerosis. METHODS: The authors retrospectively reviewed a clinical case series of 5 children who presented with a SEGA tumor to Johns Hopkins All Children's Hospital and St. Louis Children's Hospital between 2010 and 2022 and whose initial genetic workup was negative for tuberous sclerosis. All patients were treated with craniotomy for SEGA resection. TSC genetic testing was performed on all SEGA specimens. RESULTS: The children underwent open frontal craniotomy for SEGA resection from the ages of 10 months to 14 years. All cases demonstrated the classic imaging features of SEGA. Four were centered at the foramen of Monro and 1 in the occipital horn. One patient presented with hydrocephalus, 1 with headaches, 1 with hand weakness, 1 with seizures, and 1 with tumor hemorrhage. Somatic TSC1 mutation was present in the SEGA tumors of 2 patients and TSC2 mutation in 1 patient. Germline TSC mutation testing was negative for all 5 cases. No patient had other systemic findings of tuberous sclerosis on ophthalmological, dermatological, neurological, renal, or cardiopulmonary assessments and thus did not meet the clinical criteria for tuberous sclerosis. The average follow-up was 6.7 years. Recurrence was noted in 2 cases, in which 1 patient underwent radiosurgery and 1 was started on a mammalian target of rapamycin (mTOR) inhibitor (rapamycin). CONCLUSIONS: There may be intracranial implications of somatic mosaicism associated with tuberous sclerosis. Children who are diagnosed with SEGA do not necessarily have a diagnosis of tuberous sclerosis. Tumors may carry a TSC1 or TSC2 mutation, but germline testing can be negative. These children should continue to be followed with serial cranial imaging for tumor progression, but they may not require the same long-term monitoring as patients who are diagnosed with germline TSC1 or TSC2 mutations.

10.
Res Sq ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214956

RESUMO

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

13.
Neuro Oncol ; 25(8): 1474-1486, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840626

RESUMO

BACKGROUND: People with NF1 have an increased prevalence of central nervous system malignancy. However, little is known about the clinical course or pathologic features of NF1-associated gliomas in adults, limiting clinical care and research. METHODS: Adults (≥18 years) with NF1 and histologically confirmed non-optic pathway gliomas (non-OPGs) at Johns Hopkins Hospital, Memorial Sloan Kettering Cancer Center, and Washington University presenting between 1990 and 2020 were identified. Retrospective data were collated, and pathology was reviewed centrally. RESULTS: Forty-five patients, comprising 23 females (51%), met eligibility criteria, with a median of age 37 (18-68 years) and performance status of 80% (30%-100%). Tissue was available for 35 patients. Diagnoses included infiltrating (low-grade) astrocytoma (9), glioblastoma (7), high-grade astrocytoma with piloid features (4), pilocytic astrocytoma (4), high-grade astrocytoma (3), WHO diagnosis not reached (4) and one each of gliosarcoma, ganglioglioma, embryonal tumor, and diffuse midline glioma. Seventy-one percent of tumors were midline and underwent biopsy only. All 27 tumors evaluated were IDH1-wild-type, independent of histology. In the 10 cases with molecular testing, the most common genetic variants were NF1, EGFR, ATRX, CDKN2A/B, TP53, TERT, and MSH2/3 mutation. While the treatments provided varied, the median overall survival was 24 months [2-267 months] across all ages, and 38.5 [18-109] months in individuals with grade 1-2 gliomas. CONCLUSIONS: Non-OPGs in adults with NF1, including low-grade tumors, often have an aggressive clinical course, indicating a need to better understand the pathobiology of these NF1-associated gliomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatose 1 , Feminino , Humanos , Adulto , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Estudos Retrospectivos , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Progressão da Doença
14.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
15.
J Neurosurg Case Lessons ; 4(20)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377129

RESUMO

BACKGROUND: Choroid plexus papillomas are benign tumors of the choroid plexus. Although typically focal, they can metastasize. Rarely, patients may present with numerous cystic lesions throughout the craniospinal axis. OBSERVATIONS: The authors present three cases of pathologically confirmed fourth ventricular World Health Organization (WHO) grade 1 choroid plexus papillomas presenting with numerous cystic lesions throughout the craniospinal axis. Two cases were treated with only resection of the fourth ventricular mass; one was treated with a partial cyst fenestration. During follow-up, there was only mild interval growth of the cystic lesions over time, and all patients remained asymptomatic from their cystic lesions. The authors summarize five additional cases of cystic dissemination in the published literature and discuss hypotheses for the pathophysiology of this rare presentation. LESSONS: Choroid plexus papillomas may present with numerous, widely disseminated cystic lesions within the craniospinal axis. Thus, the authors recommend preoperative and routine imaging of the entire neuroaxis in patients with choroid plexus tumors, regardless of WHO grade. Although the role of adjuvant therapy and cyst fenestration in the treatment of these lesions remains unclear, watchful waiting may be indicated, especially in asymptomatic patients, because the lesions often demonstrate slow, if any, growth over time.

16.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303071

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Doença de Huntington/patologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Autofagia , MicroRNAs/genética , Progressão da Doença , Modelos Animais de Doenças
17.
Neurooncol Adv ; 4(1): vdac059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733516

RESUMO

Background: Leptomeningeal disease and hydrocephalus are present in up to 30% of patients with diffuse intrinsic pontine glioma (DIPG), however there are no animal models of cerebrospinal fluid (CSF) dissemination. As the tumor-CSF-ependymal microenvironment may play an important role in tumor pathogenesis, we identified characteristics of the Nestin-tumor virus A (Nestin-Tva) genetically engineered mouse model that make it ideal to study the interaction of tumor cells with the CSF and its associated pathways with implications for the development of treatment approaches to address CSF dissemination in DIPG. Methods: A Nestin-Tva model of DIPG utilizing the 3 most common DIPG genetic alterations (H3.3K27M, PDGF-B, and p53) was used for this study. All mice underwent MR imaging and a subset underwent histopathologic analysis with H&E and immunostaining. Results: Tumor dissemination within the CSF pathways (ventricles, leptomeninges) from the subependyma was present in 76% (25/33) of mice, with invasion of the choroid plexus, disruption of the ciliated ependyma and regional subependymal fluid accumulation. Ventricular enlargement consistent with hydrocephalus was present in 94% (31/33). Ventricle volume correlated with region-specific transependymal CSF flow (periventricular T2 signal), localized anterior to the lateral ventricles. Conclusions: This is the first study to report CSF pathway tumor dissemination associated with subependymal tumor in an animal model of DIPG and is representative of CSF dissemination seen clinically. Understanding the CSF-tumor-ependymal microenvironment has significant implications for treatment of DIPG through targeting mechanisms of tumor spread within the CSF pathways.

18.
Front Oncol ; 12: 885480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712497

RESUMO

Purpose: Distinguishing radiation necrosis (RN) from recurrent tumor remains a vexing clinical problem with important health-care consequences for neuro-oncology patients. Here, mouse models of pure tumor, pure RN, and admixed RN/tumor are employed to evaluate hydrogen (1H) and deuterium (2H) magnetic resonance methods for distinguishing RN vs. tumor. Furthermore, proof-of-principle, range-finding deuterium (2H) metabolic magnetic resonance is employed to assess glycolytic signatures distinguishing RN vs. tumor. Materials and Methods: A pipeline of common quantitative 1H MRI contrasts, including an improved magnetization transfer ratio (MTR) sequence, and 2H magnetic resonance spectroscopy (MRS) following administration of 2H-labeled glucose, was applied to C57BL/6 mouse models of the following: (i) late time-to-onset RN, occurring 4-5 weeks post focal 50-Gy (50% isodose) Gamma Knife irradiation to the left cerebral hemisphere, (ii) glioblastoma, growing ~18-24 days post implantation of 50,000 mouse GL261 tumor cells into the left cerebral hemisphere, and (iii) mixed model, with GL261 tumor growing within a region of radiation necrosis (1H MRI only). Control C57BL/6 mice were also examined by 2H metabolic magnetic resonance. Results: Differences in quantitative 1H MRI parametric values of R1, R2, ADC, and MTR comparing pure tumor vs. pure RN were all highly statistically significant. Differences in these parameter values and DCEAUC for tumor vs. RN in the mixed model (tumor growing in an RN background) are also all significant, demonstrating that these contrasts-in particular, MTR-can effectively distinguish tumor vs. RN. Additionally, quantitative 2H MRS showed a highly statistically significant dominance of aerobic glycolysis (glucose ➔ lactate; fermentation, Warburg effect) in the tumor vs. oxidative respiration (glucose ➔ TCA cycle) in the RN and control brain. Conclusions: These findings, employing a pipeline of quantitative 1H MRI contrasts and 2H MRS following administration of 2H-labeled glucose, suggest a pathway for substantially improving the discrimination of tumor vs. RN in the clinic.

19.
Indian J Pathol Microbiol ; 65(Supplement): S24-S32, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35562131

RESUMO

Glioblastoma is the most common malignant central nervous system (CNS) tumor in adults. Acute common clinical symptoms include headache, seizure, behavior changes, focal neurological deficits, and signs of increased intracranial pressure. The classic MRI finding of glioblastoma is an irregularly shaped, rim-enhancing or ring-enhancing lesion with a central dark area of necrosis. This constellation of features correlates with microscopic findings of tumor necrosis and microvascular proliferation. Besides these common features, several well-recognized histological subtypes include giant cell glioblastoma, granular cell glioblastoma, gliosarcoma, glioblastoma with a primitive neuronal component, small cell glioblastoma, and epithelioid glioblastoma. While glioblastoma was historically classified as isocitrate dehydrogenase (IDH)-wildtype and IDH-mutant groups, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) and the fifth edition of the WHO Classification of Tumors of the Central Nervous System clearly updated the nomenclature to reflect glioblastoma to be compatible with wildtype IDH status only. Therefore, glioblastoma is now defined as "a diffuse, astrocytic glioma that is IDH-wildtype and H3-wildtype and has one or more of the following histological or genetic features: microvascular proliferation, necrosis, Telomerase reverse transcriptase promoter mutation, Epidermal growth factor receptor gene amplification, +7/-10 chromosome copy-number changes (CNS WHO grade 4)."


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Adulto , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Necrose , Organização Mundial da Saúde
20.
Neuro Oncol ; 24(11): 1964-1975, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35397478

RESUMO

BACKGROUND: The prognosis for patients with pediatric high-grade glioma (pHGG) is poor despite aggressive multimodal therapy. Objective responses to targeted therapy with BRAF inhibitors have been reported in some patients with recurrent BRAF-mutant pHGG but are rarely sustained. METHODS: We performed a retrospective, multi-institutional review of patients with BRAF-mutant pHGG treated with off-label BRAF +/- MEK inhibitors as part of their initial therapy. RESULTS: Nineteen patients were identified, with a median age of 11.7 years (range, 2.3-21.4). Histologic diagnoses included HGG (n = 6), glioblastoma (n = 3), anaplastic ganglioglioma (n = 4), diffuse midline glioma (n = 3), high-grade neuroepithelial tumor (n = 1), anaplastic astrocytoma (n = 1), and anaplastic astroblastoma (n = 1). Recurrent concomitant oncogenic alterations included CDKN2A/B loss, H3 K27M, as well as mutations in ATRX, EGFR, and TERT. Eight patients received BRAF inhibitor monotherapy. Eleven patients received combination therapy with BRAF and MEK inhibitors. Most patients tolerated long-term treatment well with no grade 4-5 toxicities. Objective and durable imaging responses were seen in the majority of patients with measurable disease. At a median follow-up of 2.3 years (range, 0.3-6.5), three-year progression-free and overall survival for the cohort were 65% and 82%, respectively, and superior to a historical control cohort of BRAF-mutant pHGG patients treated with conventional therapies. CONCLUSIONS: Upfront targeted therapy for patients with BRAF-mutant pHGG is feasible and effective, with superior clinical outcomes compared to historical data. This promising treatment paradigm is currently being evaluated prospectively in the Children's Oncology Group ACNS1723 clinical trial.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Criança , Humanos , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Encefálicas/patologia , Terapia de Alvo Molecular , Estudos Retrospectivos , Glioma/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Glioblastoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA