Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Ultrasonics ; 137: 107179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939413

RESUMO

Ultrasound is an adjunct tool to mammography that can quickly and safely aid physicians in diagnosing breast abnormalities. Clinical ultrasound often assumes a constant sound speed to form diagnostic B-mode images. However, the components of breast tissue, such as glandular tissue, fat, and lesions, differ in sound speed. Given a constant sound speed assumption, these differences can degrade the quality of reconstructed images via phase aberration. Sound speed images can be a powerful tool for improving image quality and identifying diseases if properly estimated. To this end, we propose a supervised deep-learning approach for sound speed estimation from analytic ultrasound signals. We develop a large-scale simulated ultrasound dataset that generates representative breast tissue samples by modeling breast gland, skin, and lesions with varying echogenicity and sound speed. We adopt a fully convolutional neural network architecture trained on a simulated dataset to produce an estimated sound speed map. The simulated tissue is interrogated with a plane wave transmit sequence, and the complex-value reconstructed images are used as input for the convolutional network. The network is trained on the sound speed distribution map of the simulated data, and the trained model can estimate sound speed given reconstructed pulse-echo signals. We further incorporate thermal noise augmentation during training to enhance model robustness to artifacts found in real ultrasound data. To highlight the ability of our model to provide accurate sound speed estimations, we evaluate it on simulated, phantom, and in-vivo breast ultrasound data.


Assuntos
Aprendizado Profundo , Humanos , Feminino , Algoritmos , Ultrassonografia Mamária , Som , Ultrassonografia/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE Trans Comput Imaging ; 9: 367-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37997603

RESUMO

Spatial variation in sound speed causes aberration in medical ultrasound imaging. Although our previous work has examined aberration correction in the presence of a spatially varying sound speed, practical implementations were limited to layered media due to the sound speed estimation process involved. Unfortunately, most models of layered media do not capture the lateral variations in sound speed that have the greatest aberrative effect on the image. Building upon a Fourier split-step migration technique from geophysics, this work introduces an iterative sound speed estimation and distributed aberration correction technique that can model and correct for aberrations resulting from laterally varying media. We first characterize our approach in simulations where the scattering in the media is known a-priori. Phantom and in-vivo experiments further demonstrate the capabilities of the iterative correction technique. As a result of the iterative correction scheme, point target resolution improves by up to a factor of 4 and lesion contrast improves by up to 10.0 dB in the phantom experiments presented.

3.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240396

RESUMO

The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.


Assuntos
Neoplasias da Mama , Receptores Histamínicos H3 , Camundongos , Animais , Humanos , Feminino , Microbolhas , Células Endoteliais/metabolismo , Ultrassonografia/métodos , Camundongos Transgênicos , Imagem Molecular/métodos , Meios de Contraste , Neoplasias da Mama/patologia , Dispositivos Lab-On-A-Chip
4.
Sci Adv ; 9(22): eadg8176, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256942

RESUMO

Volumetric ultrasound imaging has the potential for operator-independent acquisition and enhanced field of view. Panoramic acquisition has many applications across ultrasound; spanning musculoskeletal, liver, breast, and pediatric imaging; and image-guided therapy. Challenges in high-resolution human imaging, such as subtle motion and the presence of bone or gas, have limited such acquisition. These issues can be addressed with a large transducer aperture and fast acquisition and processing. Programmable, ultrafast ultrasound scanners with a high channel count provide an unprecedented opportunity to optimize volumetric acquisition. In this work, we implement nonlinear processing and develop distributed beamformation to achieve fast acquisition over a 47-centimeter aperture. As a result, we achieve a 50-micrometer -6-decibel point spread function at 5 megahertz and resolve in-plane targets. A large volume scan of a human limb is completed in a few seconds, and in a 2-millimeter dorsal vein, the image intensity difference between the vessel center and surrounding tissue was ~50 decibels, facilitating three-dimensional reconstruction of the vasculature.


Assuntos
Mama , Fígado , Humanos , Criança , Ultrassonografia/métodos , Fígado/diagnóstico por imagem , Movimento (Física) , Imagem de Difusão por Ressonância Magnética , Imageamento Tridimensional/métodos
5.
Ultrasonics ; 132: 107010, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105021

RESUMO

Phase aberration is one of the major sources of image degradation in medical ultrasound imaging. One of the earliest and simplest techniques to correct for phase aberration involves nearest-neighbor cross correlation to estimate delays between neighboring receive channels and the compensation of aberration delays in a delay-and-sum beamformer. The main challenge is that neighboring receive channels may not have sufficient signal correlation to accurately estimate the aberration delays. Although algorithms such as the translating transmit aperture or the common midpoint gather are designed to perfectly maximize signal correlations between received signals, these algorithms require the use of different transmit apertures for each received signal. Instead, this work proposes the use of a single globally-applicable transmit apodization function that optimizes the lag-one coherence based on the van Cittert-Zernike theorem. For the application to phase aberration correction, it is shown across 20 different zero-mean Gaussian-random aberrators that the proposed optimal apodization function reduces the estimation error in the aberration delay profile from 22.85% to 15.72%.

6.
Z Med Phys ; 33(3): 267-291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36849295

RESUMO

Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.


Assuntos
Algoritmos , Imagens de Fantasmas , Ultrassonografia/métodos
9.
J Exp Clin Cancer Res ; 41(1): 299, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224614

RESUMO

BACKGROUND: Therapeutic strategies engaging the immune system against malignant cells have revolutionized the field of oncology. Proficiency of dendritic cells (DCs) for antigen presentation and immune response has spurred interest on DC-based vaccines for anti-cancer therapy. However, despite favorable safety profiles in patients, current DC-vaccines have not yet presented significant outcome due to technical barriers in active DC delivery, tumor progression, and immune dysfunction. To maximize the therapeutic response, we present here a unique cell-free DC-based vaccine capable of lymphoid organ targeting and eliciting T-cell-mediated anti-tumor effect. METHODS: We developed this novel immunotheranostic platform using plasma membranes derived from activated DCs incorporated into ultrasound contrast microbubbles (MBs), thereby offering real-time visualization of MBs' trafficking and homing in vivo. Human PBMC-derived DCs were cultured ex vivo for controlled maturation and activation using cell membrane antigens from breast cancer cells. Following DC membrane isolation, immunotheranostic microbubbles, called DC-iMBs, were formed for triple negative breast cancer treatment in a mouse model harboring a human reconstituted immune system. RESULTS: Our results demonstrated that DC-iMBs can accumulate in lymphoid organs and induce anti-tumor immune response, which significantly reduced tumor growth via apoptosis while increasing survival length of the treated animals. The phenotypic changes in immune cell populations upon DC-iMBs delivery further confirmed the T-cell-mediated anti-tumor effect. CONCLUSION: These early findings strongly support the potential of DC-iMBs as a novel immunotherapeutic cell-free vaccine for anti-cancer therapy.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Animais , Neoplasias da Mama/tratamento farmacológico , Células Dendríticas , Feminino , Humanos , Imunoterapia/métodos , Leucócitos Mononucleares , Camundongos , Microbolhas
10.
Artigo em Inglês | MEDLINE | ID: mdl-36094975

RESUMO

Algorithmic changes that increase beamforming speed have become increasingly relevant to processing synthetic aperture (SA) ultrasound data. In particular, beamforming SA data in a spatio-temporal frequency domain using the F-k (Stolt) migration have been shown to reduce the beamforming time by up to two orders of magnitude compared with the conventional delay-and-sum (DAS) beamforming, and it has been used in applications where large amounts of raw data make real-time frame rates difficult to attain, such as multistatic SA imaging and plane-wave Doppler imaging with large ensemble lengths. However, beamforming signals in a spatio-temporal Fourier space can require loading large blocks of data at once, making it memory-intensive and less suited for parallel (i.e., multithreaded) processing. As an alternative, we propose beamforming in a range-Doppler (RD) frequency domain using the range-Doppler algorithm (RDA) that has originally been developed for SA radar (SAR) imaging. Through simulation and phantom experiments, we show that RDA achieves similar lateral resolution and contrast compared with DAS and F-k migration. At the same time, higher axial sidelobes in RDA images can be reduced via (temporal) frequency binning. Like the F-k migration, RDA significantly reduces the overall number of computations relative to DAS, and it achieves ten times lower processing time on a single CPU. Because RDA uses only a spatial Fourier transform (FT), it requires two times less memory than the F-k migration to process the simulated multistatic data and can be executed on as many as a thousand parallel threads (compared with eight parallel threads for the F-k migration), making it more suitable for implementation on modern graphics processing units (GPUs). While RDA is not as parallelizable as DAS, it is expected to hold a significant speed advantage on devices with moderate parallel processing capabilities (up to several thousand cores), such as point-of-care and low-cost ultrasound devices.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ultrassonografia/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35853046

RESUMO

Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) enables the noninvasive treatment of the deep brain. This capacity relies on the ability to focus acoustic energy through the in-tact skull, a feat that requires accurate estimates of the acoustic velocity in individual patient skulls. In current practice, these estimates are generated using a pretreatment computed tomography (CT) scan and then registered to a magnetic resonance (MR) dataset on the day of the treatment. Treatment safety and efficacy can be improved by eliminating the need to register the CT data to the MR images and by improving the accuracy of acoustic velocity measurements. In this study, we examine the capacity of MR to supplement or replace CT as a means of estimating velocity in the skull. We find that MR can predict velocity with less but comparable accuracy to CT. We then use micro-CT imaging to better understand the limitations of Hounsfield unit (HU)-based estimates of velocity, demonstrating that the macrostructure of pores in the skull contributes to the acoustic velocity of the bone. We find evidence that detailed T2 measurements provide information about pore macrostructure similar to the information obtained with micro-CT, offering a potential clinical mechanism for improving patient-specific estimates of acoustic velocity in the human skull.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Acústica , Humanos , Espectroscopia de Ressonância Magnética , Crânio
12.
J Nanobiotechnology ; 20(1): 267, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689262

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype with poor prognosis. Although anatomical imaging figures prominently for breast lesion screening, TNBC is often misdiagnosed, thus hindering early medical care. Ultrasound (US) molecular imaging using nanobubbles (NBs) capable of targeting tumor cells holds great promise for improved diagnosis and therapy. However, the lack of conventional biomarkers in TNBC impairs the development of current targeted agents. Here, we exploited the homotypic recognition of cancer cells to synthesize the first NBs based on TNBC cancer cell membrane (i.e., NBCCM) as a targeted diagnostic agent. We developed a microfluidic technology to synthesize NBCCM based on the self-assembly property of cell membranes in aqueous solutions. In vitro, optimal NBCCM had a hydrodynamic diameter of 683 ± 162 nm, showed long-lasting US contrast enhancements and homotypic affinity. In vivo, we demonstrated that NBCCM showed increased extravasation and retention in a TNBC mouse model compared to non-targeted NBs by US molecular imaging. Peak intensities and areas under the curves from time-intensity plots showed a significantly enhanced signal from NBCCM compared to non-targeted NBs (2.1-fold, P = 0.004, and, 3.6-fold, P = 0.0009, respectively). Immunofluorescence analysis further validated the presence of NBCCM in the tumor microenvironment. Circumventing the challenge for universal cancer biomarker identification, our approach could enable TNBC targeting regardless of tumor tissue heterogeneity, thus improving diagnosis and potentially gene/drug targeted delivery. Ultimately, our approach could be used to image many cancer types using biomimetic NBs prepared from their respective cancer cell membranes.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Biomimética , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Imagem Molecular/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
13.
Artigo em Inglês | MEDLINE | ID: mdl-35353699

RESUMO

Phase aberration is widely considered a major source of image degradation in medical pulse-echo ultrasound. Traditionally, near-field phase aberration correction techniques are unable to account for distributed aberrations due to a spatially varying speed of sound in the medium, while most distributed aberration correction techniques require the use of point-like sources and are impractical for clinical applications where diffuse scattering is dominant. Here, we present two distributed aberration correction techniques that utilize sound speed estimates from a tomographic sound speed estimator that builds on our previous work with diffuse scattering in layered media. We first characterize the performance of our sound speed estimator and distributed aberration correction techniques in simulations where the scattering in the media is known a priori. Phantom and in vivo experiments further demonstrate the capabilities of the sound speed estimator and the aberration correction techniques. In phantom experiments, point target resolution improves from 0.58 to 0.26 and 0.27 mm, and lesion contrast improves from 17.7 to 23.5 and 25.9 dB, as a result of distributed aberration correction using the eikonal and wavefield correlation techniques, respectively.


Assuntos
Som , Tomografia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Ultrassonografia/métodos
14.
Nanotheranostics ; 6(1): 62-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976581

RESUMO

Rationale: To assess treatment effects of 4 complementary miRNAs (miRNA-100/miRNA-122/antimiRNA-10b/antimiRNA-21) encapsulated in a biodegradable PLGA-PEG nanoparticle, administered by an ultrasound-guided microbubble-mediated targeted delivery (UGMMTD) approach in mouse models of hepatocellular carcinoma (HCC). Methods:In vitro apoptotic index was measured in HepG2 and Hepa1-6 HCC cells treated with various combinations of the 4 miRNAs with doxorubicin. Three promising combinations were further tested in vivo by using UGMMTD. 63 HepG2 xenografts in mice were randomized into: group 1, miRNA-122/antimiRNA-10b/antimiRNA-21/US/doxorubicin; group 2, miRNA-100/miRNA-122/antimiRNA-10b/antimiRNA-21/US/doxorubicin; group 3, miRNA-100/miRNA-122/antimiRNA-10b/US/doxorubicin; group 4, miRNA-122/anitmiRNA-10b/antimiRNA-21/doxorubicin; group 5, miRNA-100/miRNA-122/antimiRNA-10b/antimiRNA-21/doxorubicin; group 6, miRNA-100/miRNA-122/antimiRNA-10b/doxorubicin; group 7, doxorubicin only treatment; and group 8, without any treatment. Tumor volumes were measured through 18 days. H&E staining, TUNEL assay, and qRT-PCR quantification for delivered miRNAs were performed. Results:In vivo results showed that UGMMTD of miRNAs with doxorubicin in groups 1-3 significantly (P<0.05) delayed tumor growth compared to control without any treatment, and doxorubicin only from day 7 to 18. On qRT-PCR, levels of delivered miRNAs were significantly (P<0.05) higher in groups 1-3 upon UGMMTD treatment compared to controls. TUNEL assay showed that upon UGMMTD, significantly higher levels of apoptotic cell populations were observed in groups 1-3 compared to controls. Toxicity was not observed in various organs of different groups. Conclusions: UGMMTD of miRNA-100/miRNA-122/antimiRNA-10b/antimiRNA-21 combination improved therapeutic outcome of doxorubicin chemotherapy in mouse models of HCC by substantial inhibition of tumor growth and significant increase in apoptotic index.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microbolhas , MicroRNAs/genética , Ultrassonografia de Intervenção
15.
Artigo em Inglês | MEDLINE | ID: mdl-34990357

RESUMO

We present an intravascular ultrasound (IVUS) transducer array designed to enable shear wave elasticity imaging (SWEI) of arteries for the detection and characterization of atherosclerotic soft plaques. Using a custom dicing fixture, we have fabricated single-element and axially-segmented array transducer prototypes from 4.6-Fr to 7.6-Fr piezoceramic tubes, respectively. Focused excitation of the array prototype at 4 MHz yielded a focal gain of 5× in intensity, for an estimated 60 mW/cm2 [Formula: see text] and 1.6-MPa negative peak pressure at 4.5-mm range in water. The single-element transducer generated a peak radial displacement of [Formula: see text] in a uniform elasticity phantom, with axial shear waves detectable by an external linear array probe up to 5 mm away from the excitation plane. In a vessel phantom with a soft inclusion, the array prototype generated peak displacements of 2.2 and [Formula: see text] in the soft inclusion and vessel wall regions, respectively. A SWEI image of the vessel phantom was reconstructed, with measured shear wave speed (SWS) of 1.66 ± 0.91 m/s and 0.97 ± 0.59 m/s for the soft inclusion and vessel wall regions, respectively. The array prototype was also used to obtain a SWEI image of an ex vivo porcine artery, with a mean SWS of 3.97 ± 1.12 m/s. These results suggest that a cylindrical intravascular ultrasound (IVUS) transducer array could be made capable of SWEI for atherosclerotic plaque detection in coronary arteries.


Assuntos
Técnicas de Imagem por Elasticidade , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Imagens de Fantasmas , Transdutores , Ultrassonografia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34723801

RESUMO

Our previous methodology in local sound speed estimation utilized time delays measured by the cross correlation of delayed full-synthetic aperture channel data to estimate the average speed of sound. However, focal distortions in this methodology lead to biased estimates of the average speed of sound, which, in turn, leads to biased estimates of the local speed of sound. Here, we demonstrate the bias in the previous methodology and introduce a coherence-based average sound speed estimator that eliminates this bias and is computationally much cheaper in practice. Because this coherence-based approach estimates the average sound speed in the medium over an equally spaced grid in depth rather than time, we derive a refined model that relates the local and average speeds of sound as a function of depth in layered media. A fast, closed-form inversion of this model yields highly accurate local sound speed estimates. The root-mean-square (rms) error of local sound speed reconstruction in simulations of two-layer media is 4.6 and 2.5 m/s at 4 and 8 MHz, respectively. This work examines the impact of frequency, f -number, aberration, and reverberation on sound speed estimation. Phantom and in vivo experiments in rats further validate the coherence-based sound speed estimator.


Assuntos
Som , Animais , Frequência Cardíaca , Imagens de Fantasmas , Ratos , Ultrassonografia/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-34941507

RESUMO

Lesion detectability (LD) quantifies how easily a lesion or target can be distinguished from the background. LD is commonly used to assess the performance of new ultrasound imaging methods. The contrast-to-noise ratio (CNR) is the most popular measure of LD; however, recent work has exposed its vulnerability to manipulations of dynamic range. The generalized CNR (gCNR) has been proposed as a robust histogram-based alternative that is invariant to such manipulations. Here, we identify key shortcomings of CNR and strengths of gCNR as LD metrics for modern beamformers. Using the measure theory, we pose LD as a distance between empirical probability measures (i.e., histograms) and prove that: 1) gCNR is equal to the total variation distance between probability measures and 2) gCNR is one minus the error rate of the ideal observer. We then explore several consequences of measure-theoretic LD in simulation studies. We find that histogram distances depend on bin selection that LD must be considered in the context of spatial resolution and that many histogram distances are invariant under measure-preserving isomorphisms of the sample space (e.g., dynamic range transformations). Finally, we provide a mathematical interpretation for why quantitative values such as contrast ratio (CR), CNR, and signal-to-noise ratio should not be compared between images with different dynamic ranges or underlying units and demonstrate how histogram matching can be used to reenable such quantitative comparisons.


Assuntos
Ultrassonografia , Simulação por Computador , Imagens de Fantasmas , Probabilidade , Razão Sinal-Ruído , Ultrassonografia/métodos
18.
Phys Med Biol ; 67(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34933288

RESUMO

Objective. Speed of sound has previously been demonstrated to correlate with fat concentration in the liver. However, estimating speed of sound in the liver noninvasively can be biased by the speed of sound of the tissue layers overlying the liver. Here, we demonstrate a noninvasive local speed of sound estimator, which is based on a layered media assumption, that can accurately capture the speed of sound in the liver. We validate the estimator using an obese Zucker rat model of non-alcoholic fatty liver disease and correlate the local speed of sound with liver steatosis.Approach.We estimated the local and global average speed of sound noninvasively in 4 lean Zucker rats fed a normal diet and 16 obese Zucker rats fed a high fat diet for up to 8 weeks. The ground truth speed of sound and fat concentration were measured from the excised liver using established techniques.Main Results. The noninvasive, local speed of sound estimates of the livers were similar in value to their corresponding 'ground truth' measurements, having a slope ± standard error of the regression of 0.82 ± 0.15 (R2= 0.74 andp< 0.001). Measurement of the noninvasive global average speed of sound did not reliably capture the 'ground truth' speed of sound in the liver, having a slope of 0.35 ± 0.07 (R2= 0.74 andp< 0.001). Decreasing local speed of sound was observed with increasing hepatic fat accumulation (approximately -1.7 m s-1per 1% increase in hepatic fat) and histopathology steatosis grading (approximately -10 to -13 m s-1per unit increase in steatosis grade). Local speed of sound estimates were highly correlated with steatosis grade, having Pearson and Spearman correlation coefficients both ranging from -0.87 to -0.78. In addition, a lobe-dependent speed of sound in the liver was observed by theex vivomeasurements, with speed of sound differences of up to 25 m s-1(p< 0.003) observed between lobes in the liver of the same animal.Significance.The findings of this study suggest that local speed of sound estimation has the potential to be used to predict or assist in the measurement of hepatic fat concentration and that the global average speed of sound should be avoided in hepatic fat estimation due to significant bias in the speed of sound estimate.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Obesidade , Ratos , Ratos Zucker , Som , Ultrassonografia/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-34003748

RESUMO

Power Doppler (PD) is a commonly used technique for flow detection and vessel visualization in radiology clinics. Despite its broad set of applications, PD suffers from multiple noise sources and artifacts, such as thermal noise, clutter, and flash artifacts. In addition, a tradeoff exists between acquisition time and Doppler image quality. These limit the ability of clinical PD imaging in deep-lying and small-vessel detection and visualization, particularly among patients with high body mass indices (BMIs). To improve the Doppler vessel detection, we have previously proposed coherent flow PD (CFPD) imaging and demonstrated its performance on porcine vasculature. In this article, we report on a pilot clinical study of CFPD imaging on healthy human volunteers and patients with high BMI to assess the clinical feasibility of the technique in liver imaging. In this study, we built a real-time CFPD imaging system using a graphical processing unit (GPU)-based software beamformer and a CFPD processing module. Using the real-time CFPD imaging system, the liver vasculature of 15 healthy volunteers with normal BMI below 25 and 15 patients with BMI greater than 25 was imaged. Both PD and CFPD image streams were produced simultaneously. The generalized contrast-to-noise ratio (gCNR) of the PD and CFPD images was measured to provide the quantitative evaluation of image quality and vessel detectability. Comparison of PD and CFPD image shows that gCNR is improved by 35% in healthy volunteers and 28% in high BMI patients with CFPD compared to PD. Example images are provided to show that the improvement in the Doppler image gCNR leads to greater detection of small vessels in the liver. In addition, we show that CFPD can suppress in vivo reverberation clutter in clinical imaging.


Assuntos
Fígado , Ultrassonografia Doppler , Animais , Artefatos , Humanos , Fígado/diagnóstico por imagem , Projetos Piloto , Razão Sinal-Ruído , Suínos
20.
IEEE Trans Med Imaging ; 40(7): 1888-1897, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755561

RESUMO

Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.


Assuntos
Técnicas Fotoacústicas , Acústica , Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA