Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 50(2): 962-974, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037018

RESUMO

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.


Assuntos
DNA Polimerase II/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Replicação do DNA , Mutação , Taxa de Mutação
2.
J Biol Chem ; 291(12): 6456-70, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797125

RESUMO

Replicative DNA polymerases (DNAPs) require divalent metal cations for phosphodiester bond formation in the polymerase site and for hydrolytic editing in the exonuclease site. Me(2+) ions are intimate architectural components of each active site, where they are coordinated by a conserved set of amino acids and functional groups of the reaction substrates. Therefore Me(2+) ions can influence the noncovalent transitions that occur during each nucleotide addition cycle. Using a nanopore, transitions in individual Φ29 DNAP complexes are resolved with single-nucleotide spatial precision and sub-millisecond temporal resolution. We studied Mg(2+) and Mn(2+), which support catalysis, and Ca(2+), which supports deoxynucleoside triphosphate (dNTP) binding but not catalysis. We examined their effects on translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease sites. All three metals cause a concentration-dependent shift in the translocation equilibrium, predominantly by decreasing the forward translocation rate. Me(2+) also promotes an increase in the backward translocation rate that is dependent upon the primer terminal 3'-OH group. Me(2+) modulates the translocation rates but not their response to force, suggesting that Me(2+) does not affect the distance to the transition state of translocation. Absent Me(2+), the primer strand transfer pathway between the polymerase and exonuclease sites displays additional kinetic states not observed at >1 mm Me(2+). Complementary dNTP binding is affected by Me(2+) identity, with Ca(2+) affording the highest affinity, followed by Mn(2+), and then Mg(2+). Both Ca(2+) and Mn(2+) substantially decrease the dNTP dissociation rate relative to Mg(2+), while Ca(2+) also increases the dNTP association rate.


Assuntos
Cloreto de Cálcio/química , Cloretos/química , DNA Polimerase Dirigida por DNA/química , Cloreto de Magnésio/química , Compostos de Manganês/química , Proteínas Virais/química , Substituição de Aminoácidos , Bacteriófagos/enzimologia , Biocatálise , Replicação do DNA , Desoxicitidina Monofosfato/química , Nucleotídeos de Desoxiguanina/química , Cinética , Polimerização , Ligação Proteica
3.
Biochemistry ; 53(51): 8061-76, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25478721

RESUMO

Ribonucleoside triphosphates (rNTPs) are frequently incorporated during DNA synthesis by replicative DNA polymerases (DNAPs), and once incorporated are not efficiently edited by the DNAP exonucleolytic function. We examined the kinetic mechanisms that govern selection of complementary deoxyribonucleoside triphosphates (dNTPs) over complementary rNTPs and that govern the probability of a complementary ribonucleotide at the primer terminus escaping exonucleolytic editing and becoming stably incorporated. We studied the quantitative responses of individual Φ29 DNAP complexes to ribonucleotides using a kinetic framework, based on our prior work, in which transfer of the primer strand from the polymerase to exonuclease site occurs prior to translocation, and translocation precedes dNTP binding. We determined transition rates between the pre-translocation and post-translocation states, between the polymerase and exonuclease sites, and for dNTP or rNTP binding, with single-nucleotide spatial precision and submillisecond temporal resolution, from ionic current time traces recorded when individual DNAP complexes are held atop a nanopore in an electric field. The predominant response to the presence of a ribonucleotide in Φ29 DNAP complexes before and after covalent incorporation is significant destabilization, relative to the presence of a deoxyribonucleotide. This destabilization is manifested in the post-translocation state prior to incorporation as a substantially higher rNTP dissociation rate and manifested in the pre-translocation state after incorporation as rate increases for both primer strand transfer to the exonuclease site and the forward translocation, with the probability of editing not directly increased. In the post-translocation state, the primer terminal 2'-OH group also destabilizes dNTP binding.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Primers do DNA/química , Primers do DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nanoporos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética
4.
J Am Chem Soc ; 136(19): 7117-31, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24761828

RESUMO

Exonucleolytic editing of incorrectly incorporated nucleotides by replicative DNA polymerases (DNAPs) plays an essential role in the fidelity of DNA replication. Editing requires that the primer strand of the DNA substrate be transferred between the DNAP polymerase and exonuclease sites, separated by a distance that is typically on the order of ~30 Å. Dynamic transitions between functional states can be quantified with single-nucleotide spatial precision and submillisecond temporal resolution from ionic current time traces recorded when individual DNAP complexes are held atop a nanoscale pore in an electric field. In this study, we have exploited this capability to determine the kinetic relationship between the translocation step and primer strand transfer between the polymerase and exonuclease sites in complexes formed between the replicative DNAP from bacteriophage Φ29 and DNA. We demonstrate that the pathway for primer strand transfer from the polymerase to exonuclease site initiates prior to the translocation step, while complexes are in the pre-translocation state. We developed a mathematical method to determine simultaneously the forward and reverse translocation rates and the rates of primer strand transfer in both directions between the polymerase and the exonuclease sites, and we have applied it to determine these rates for Φ29 DNAP complexes formed with a DNA substrate bearing a fully complementary primer-template duplex. This work provides a framework that will be extended to determine the kinetic mechanisms by which incorporation of noncomplementary nucleotides promotes primer strand transfer from the polymerase site to the exonuclease site.


Assuntos
Fagos Bacilares/enzimologia , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Fagos Bacilares/química , Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Sequência de Bases , Domínio Catalítico , Replicação do DNA , DNA Viral/química , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Cinética , Mutação Puntual , Termodinâmica
5.
J Biol Chem ; 289(10): 6350-6361, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24464581

RESUMO

The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.


Assuntos
Fagos Bacilares/enzimologia , Domínio Catalítico , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Fagos Bacilares/genética , Replicação do DNA/genética , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Ligação Proteica , Transporte Proteico , Especificidade por Substrato
6.
J Am Chem Soc ; 135(24): 9149-55, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23705688

RESUMO

Complexes formed between phi29 DNA polymerase (DNAP) and DNA fluctuate discretely between the pre-translocation and post-translocation states on the millisecond time scale. The translocation fluctuations can be observed in ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an electric field. The presence of complementary 2'-deoxynucleoside triphosphate (dNTP) shifts the equilibrium across the translocation step toward the post-translocation state. Here we have determined quantitatively the kinetic relationship between the phi29 DNAP translocation step and dNTP binding. We demonstrate that dNTP binds to phi29 DNAP-DNA complexes only after the transition from the pre-translocation state to the post-translocation state; dNTP binding rectifies the translocation but it does not directly drive the translocation. Based on the measured time traces of current amplitude, we developed a method for determining the forward and reverse translocation rates and the dNTP association and dissociation rates, individually at each dNTP concentration and each voltage. The translocation rates, and their response to force, match those determined for phi29 DNAP-DNA binary complexes and are unaffected by dNTP. The dNTP association and dissociation rates do not vary as a function of voltage, indicating that force does not distort the polymerase active site and that dNTP binding does not directly involve a displacement in the translocation direction. This combined experimental and theoretical approach and the results obtained provide a framework for separately evaluating the effects of biological variables on the translocation transitions and their effects on dNTP binding.


Assuntos
Fagos Bacilares/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/metabolismo , Fagos Bacilares/metabolismo , Sequência de Bases , DNA/metabolismo , Cinética
7.
J Am Chem Soc ; 134(45): 18816-23, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23101437

RESUMO

Complexes formed between the bacteriophage phi29 DNA polymerase (DNAP) and DNA fluctuate between the pre-translocation and post-translocation states on the millisecond time scale. These fluctuations can be directly observed with single-nucleotide precision in real-time ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an applied electric field. We recently quantified the equilibrium across the translocation step as a function of applied force (voltage), active-site proximal DNA sequences, and the binding of complementary dNTP. To gain insight into the mechanism of this step in the DNAP catalytic cycle, in this study, we have examined the stochastic dynamics of the translocation step. The survival probability of complexes in each of the two states decayed at a single exponential rate, indicating that the observed fluctuations are between two discrete states. We used a robust mathematical formulation based on the autocorrelation function to extract the forward and reverse rates of the transitions between the pre-translocation state and the post-translocation state from ionic current traces of captured phi29 DNAP-DNA binary complexes. We evaluated each transition rate as a function of applied voltage to examine the energy landscape of the phi29 DNAP translocation step. The analysis reveals that active-site proximal DNA sequences influence the depth of the pre-translocation and post-translocation state energy wells and affect the location of the transition state along the direction of the translocation.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Termodinâmica , Biocatálise , DNA/química , DNA Polimerase Dirigida por DNA/química
8.
J Biol Chem ; 287(16): 13407-21, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22378784

RESUMO

Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.


Assuntos
Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nanoporos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Domínio Catalítico/fisiologia , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/síntese química , Difosfatos/metabolismo , Ativação Enzimática/fisiologia , Exonucleases/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Sequências Repetidas Invertidas/genética , Proteínas Motores Moleculares/fisiologia , Conformação de Ácido Nucleico
9.
J Biol Chem ; 286(16): 14480-92, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21362617

RESUMO

During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.


Assuntos
DNA Polimerase I/química , Nanoporos , Algoritmos , Biofísica/métodos , DNA/química , DNA Polimerase I/metabolismo , Eletrofisiologia , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Estatísticos , Nanotecnologia/métodos , Nucleotídeos/química , Oligonucleotídeos/química , Ligação Proteica , Especificidade por Substrato
10.
Nat Nanotechnol ; 5(11): 798-806, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20871614

RESUMO

Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.


Assuntos
Replicação do DNA , DNA/metabolismo , Eletroforese , Nanoporos , Nanotecnologia/métodos , Proteínas de Bactérias , DNA/química , DNA Polimerase I/química , DNA Polimerase I/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Campos Eletromagnéticos , Proteínas Hemolisinas/química , Modelos Moleculares , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA