Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255755

RESUMO

Wavelength-tunable thulium-doped fiber laser is demonstrated employing a digital micromirror device (DMD) in combination with a fixed grating. The diffraction property of four typical models of DMDs and its steering efficiency for the laser system are analyzed based on two-dimensional grating theory. By spatially modulating reflective patterns on a DMD, the stable, fast, and flexible tuning of lasing wavelength from 1930 nm to 2000 nm is achieved with wavelength tuning accuracy of 0.1 nm. The side-mode suppression ratio is larger than 50 dB around the 2 µm band with 3 dB linewidth less than 0.05 nm. The wavelength drift and power fluctuation are lower than 0.05 nm and 0.1 dB within 1 h at the room temperature, respectively.

2.
Micromachines (Basel) ; 10(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818766

RESUMO

Optical filters have been adopted in many applications such as reconfigurable telecommunication switches, tunable lasers and spectral imaging. However, most of commercialized filters based on a micro-electrical-mechanical system (MEMS) only provide a minimum bandwidth of 25 GHz in telecom so far. In this work, the programmable filter based on a digital micromirror device (DMD) experimentally demonstrated a minimum bandwidth of 12.5 GHz in C-band that matched the grid width of the International Telecommunication Union (ITU) G.694.1 standard. It was capable of filtering multiple wavebands simultaneously and flexibly by remotely uploading binary holograms onto the DMD. The number of channels and the center wavelength could be adjusted independently, as well as the channel bandwidth and the output power. The center wavelength tuning resolution of this filter achieved 0.033 nm and the insertion loss was about 10 dB across the entire C-band. Since the DMD had a high power handling capability (25 KW/cm²) of around 200 times that of the liquid crystal on silicon (LCoS) chip, the DMD-based filters are expected to be applied in high power situations.

3.
Micromachines (Basel) ; 10(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625981

RESUMO

The tunable fiber laser with high tuning resolution in the C-band is proposed and demonstrated based on a digital micromirror device (DMD) chip and an echelle grating. The laser employs a DMD as a programmable wavelength filter and an echelle grating with high-resolution features to design a cross-dispersion optical path to achieve high-precision tuning. Experimental results show that wavelength channels with 3 dB-linewidth less than 0.02 nm can be tuned flexibly in the C-band and the wavelength tuning resolution is as small as 0.036 nm. The output power fluctuation is better than 0.07 dB, and the wavelength shift is below 0.013 nm in 1 h at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA