Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Food Chem ; 449: 139305, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615636

RESUMO

The main objective of this study is to investigate the impact and mechanism of soy lecithin incorporation into the gelatin-cinnamaldehyde emulsion, focusing on how it influences emulsion stability during the electrospinning process. In this work, a cinnamaldehyde/gelatin/soy lecithin (CGS) fiber membrane with excellent antibacterial properties was successfully created. The addition of soy lecithin improves the stability of the emulsion and improves the loading performance and fiber morphology of the CGS fiber membrane. Fourier Transform infrared spectroscopy (FTIR) and urea addition confirmed that soy lecithin may strengthen the interface structure of gelatin in the oil and water phases through hydrogen bonds, thus enhancing the stability of the emulsion in electrospinning. The application tests also revealed that the CGS fiber membrane effectively preserved the sensory quality of beef. This study indicates that the vector construction method can extend the utilization of cinnamaldehyde in food industry.


Assuntos
Acroleína , Acroleína/análogos & derivados , Emulsões , Gelatina , Glycine max , Lecitinas , Nanofibras , Acroleína/química , Acroleína/farmacologia , Gelatina/química , Emulsões/química , Lecitinas/química , Nanofibras/química , Glycine max/química , Animais , Bovinos , Antibacterianos/química , Antibacterianos/farmacologia
2.
Int J Food Microbiol ; 413: 110581, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246026

RESUMO

Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.


Assuntos
Monoterpenos Acíclicos , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas Hemolisinas , Proteínas de Bactérias/metabolismo , Enterotoxinas/metabolismo , Carne , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
3.
Int J Biol Macromol ; 260(Pt 1): 129475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262830

RESUMO

`The objective of current research was to encapsulate citrus bergamia essential oil (CBEO) in nanocomplexes composed of sodium caseinate (SC) and peach gum polysaccharide (PG) in various ratios (SC/PG-1:0, 0:1, 1:1, 1:3, and 3:1). The nanocomplexes formed by the combination of SC and PG in a ratio of 1:3 exhibited a zeta potential of -21.36 mV and a PDI of 0.25. The CBEO-loaded SC/PG (1:3) nanocomplexes revealed the maximum encapsulation efficiency (82.47 %) and loading capacity (1.85 %). FTIR also confirmed the secondary structure variations in response to different ratios of CBEO-loaded SC/PG nanocomplexes. In addition, the XRD and fluorescence spectroscopy analysis also revealed structural changes among CBEO nanocomplexes. The thermal capability of CBEO-loaded SC/PG (1:3) nanocomplexes via TGA showed the minimum weight loss among other complexes. SEM and CLSM analysis demonstrated the uniform distribution and spherical morphology of CBEO-loaded SC/PG (1:3) nanocomplexes. The antioxidant activity of free CBEO was significantly improved in CBEO-loaded nanocomplexes. Likewise, the inhibitory activity of CBEO-loaded nanocomplexes exhibited significantly higher antibacterial action against S. aureus and E. coli. The aforementioned perspective suggests that SC/PG nanocomplexes have potent potential to serve as highly effective nanocarriers with a broad spectrum of uses in the pharmaceutical and food sectors.


Assuntos
Citrus , Óleos Voláteis , Prunus persica , Caseínas/química , Escherichia coli , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/química
4.
Int J Food Microbiol ; 400: 110266, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37263173

RESUMO

Ultrasound technology has been focused on due to its unique advantages in biofilm removal compared with traditional antibacterial methods. Herein, the anti-biofilm properties of low-frequency ultrasound (LFUS) were studied against Enterohemorrhagic Escherichia coli O157: H7 (E. coli O157:H7). After ultrasonication (20 kHz, 300 W) for 5 min, the removal rate of biofilm from polystyrene sheets reached up to 99.999 %. However, the bacterial cells could not be inactivated completely even extending the duration of ultrasonic irradiation to 30 min. Fortunately, this study indicated that LFUS could efficiently weaken the metabolic capacity and biofilm-forming ability of bacterial cells separated from biofilm. It could be associated with the removal of cell surface appendages and damage to cell membrane induced by mechanical vibration and acoustic cavitation. Besides, the genetic analysis proved that the transcription level of genes involved in curli formation was significantly down-regulated during ultrasonic irradiation, thus impeding the process of irreversible adhesion and cells aggregation. Finally, the actual application effect of LFUS was also evaluated in different fresh produces model. The results of this study would provide a theoretical basis for the further application of ultrasound in the food preservation.


Assuntos
Biofilmes , Escherichia coli O157 , Microbiologia de Alimentos , Ondas Ultrassônicas , Escherichia coli O157/citologia , Escherichia coli O157/efeitos da radiação , Biofilmes/efeitos da radiação , Viabilidade Microbiana , Cucumis sativus/microbiologia , Cucumis sativus/efeitos da radiação , Cucumis melo/microbiologia , Cucumis melo/efeitos da radiação , Lactuca/microbiologia , Lactuca/efeitos da radiação , Contaminação de Alimentos
5.
Small ; 19(9): e2205853, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526435

RESUMO

A booming demand for wearable electronic devices urges the development of multifunctional smart fabrics. However, it is still facing a challenge to fabricate multifunctional smart fabrics with satisfactory mechanical property, excellent Joule heating performance, highly efficient photothermal conversion, outstanding electromagnetic shielding effectiveness, and superior anti-bacterial capability. Here, a MoSe2 @MXene heterostructure-based multifunctional cellulose fabric is fabricated by depositing MXene nanosheets onto cellulose fabric followed by a facile hydrothermal method to grow MoSe2 nanoflakes on MXene layers. A low-voltage Joule heating therapy platform with rapid Joule heating response (up to 230 °C in 25 s at a supplied voltage of 4 V) and stable performance under repeated bending cycles (up to 1000 cycles) is realized. Besides, the multifunctional fabric also exhibits excellent photothermal performance (up to 130 °C upon irradiation for 25 s with a light intensity of 400 mW cm-2 ), outstanding electromagnetic interference shielding effectiveness (37 dB), and excellent antibacterial performances (>90% anti-bacterial rate toward Escherichia coli, Bacillus subtilis, and Staphylococcus aureus). This work offers an efficient avenue to fabricate multifunctional wearable thermal therapy devices for mobile healthcare and personal thermal management.


Assuntos
Hipertermia Induzida , Antibacterianos/farmacologia , Celulose , Escherichia coli
6.
Food Chem ; 382: 132369, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152025

RESUMO

There are still many limitations in the application of natural active compounds in meat preservation. Herein, thymol was first inserted into the cavity of ß-cyclodextrin (ß-CD) to form a stable inclusion complex (THY/ß-CD-IC). The computational investigation showed that the optimized complexation energy for THY/ß-CD-IC was -12.95 kcal mol-1. It contributed to the improvement of the thermal stability of thymol in the inclusion compound. Furthermore, the functionalized nanofibers (THY/ß-CD-IC-NFs) loaded with THY/ß-CD-IC were successfully fabricated by electrospinning of the mixture of casein and polyethylene oxide. When dealing with protease-producing bacteria, controllable release of thymol from THY/ß-CD-IC-NFs was achieved through the response of casein to the hydrolysis of bacterial protease. The application results indicated that the prepared THY/ß-CD-IC-NFs had a long-term antimicrobial activity for chilled beef preservation during 7-days storage. The information from this study presents a feasible strategy for the development of natural extracts for use in meat preservation.


Assuntos
Nanofibras , beta-Ciclodextrinas , Animais , Antibacterianos/farmacologia , Caseínas , Bovinos , Preparações de Ação Retardada/farmacologia , Timol/farmacologia , beta-Ciclodextrinas/farmacologia
7.
Int J Food Microbiol ; 338: 108989, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33257098

RESUMO

Recently, natural essential oils have been extensively studied for anti-bacterial application in foods due to their safety and high biological activity. Herein, Litsea cubeba essential oil (LC-EO) was applied as a natural anti-bacterial agent for exploring its anti-bacterial mechanism against Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7). The LC-EO could effectively inhibit the growth of EHEC O157:H7 and the minimal inhibitory concentration (MIC) was 0.5 mg/mL. In the study of anti-bacterial mechanism, the LC-EO was proved with good membrane penetration ability, which could destroy bacterial cell structure and disorder membrane permeability, thereby causing the leakage of intracellular organic matters. Furthermore, the inhibitory effects of LC-EO on physiological metabolism of EHEC O157:H7, including respiratory metabolism, enzyme activity, the replication of nucleic acid and the transcription level of main virulence genes (stx1, stx2, ehxA, eae), were also demonstrated in this study. Specially, the possible action mechanism of different components of LC-EO on bacterial genetic material was revealed deeply on molecular level by the molecular docking technology. Finally, the results of application evaluation indicated that the addition of LC-EO at MIC in different vegetable juices could maintain anti-bacterial rate above 99.9% for 4 days without remarkable influence on foods sensory quality. The information in this study provides the necessary theoretical foundation for extending the application of LC-EO in food preservation.


Assuntos
Escherichia coli O157/efeitos dos fármacos , Sucos de Frutas e Vegetais , Litsea/química , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Conservação de Alimentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
8.
9.
Artigo em Inglês | MEDLINE | ID: mdl-22074883

RESUMO

Wool fiber was modified by ultraviolet irradiation (UV) and functionalized by grafting antibacterial agent. The structure and properties of antibacterial wool fiber were discussed in detail. The secondary structure changes and crystal structure were analyzed based on Fourier Transformation Raman Spectrometry (FTR) and X-ray diffraction (XRD). The results show that the disordered degree of UV-treated sample was increased and the antibacterial sample became more oriented. Compared with parent wool fiber, the antibacterial wool fiber was improved in mechanical property. The force, tensile strength and elongation were increased by 18%, 16%, and 7%, respectively. Also, the anti-shrinkage performance was increased because of the decrease in the directional frictional effect (DFE).


Assuntos
Antibacterianos/farmacologia , Teste de Materiais , Nanoestruturas/química , Lã/química , Animais , Cristalografia por Raios X , Fricção/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície/efeitos dos fármacos , Vibração , Lã/ultraestrutura
10.
Oligonucleotides ; 16(4): 365-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17155911

RESUMO

Survivin, an inhibitor of apoptosis protein, deserves attention as a selective target for cancer therapy because it is overexpressed in many cancers, including human hepatocellular carcinoma (HCC). Here, we report a novel antisense oligonucleotide (ASO) against survivin for its effectiveness against tumor growth both in vitro and in vivo, and providing evidence in treatment for HCC. Initially, transfection of liver tumor cells HepG2 with ASO resulted in significant cells growth inhibition and reduction expression of survivin mRNA and protein, in a dose-dependent manner. Using caspase-3 protease activation assays, we observed that ASO has induced significantly greater apoptosis rate compared to control oligonucleotides. Furthermore, we used an orthotopic transplant model of HCC in nude mice to investigate the effect of ASO on tumor growth in vivo, and ASO reagents were delivered by intravenous injection. Interestingly, this systemic treatment also resulted in significant inhibition in tumor growth. Tumor growth in mice treated with ASO (50 and 75 mg/kg per day) was significantly inhibited (45.31% and 60.94%, respectively) compared with saline-injected group (p < 0.01), in a dose-dependent manner, and the effect of ASO on tumor growth was associated with downregulation of survivin in tumor xenografts. Moreover, the level of serum alpha-fetoprotein in ASO-treated groups was also decreased in a dose-dependent manner. Taken together, these data suggest that the usefulness of survivin ASO could potentially be a promising gene therapy approach to treatment of HCC.


Assuntos
Neoplasias Hepáticas Experimentais/terapia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Animais , Sequência de Bases , Caspase 3/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Terapia Genética/métodos , Humanos , Proteínas Inibidoras de Apoptose , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Oligodesoxirribonucleotídeos Antissenso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Survivina , Transfecção , Transplante Heterólogo
11.
Acta Pharmacol Sin ; 26(3): 364-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15715935

RESUMO

AIM: To investigate the effect of antisense oligodeoxynucleotides (ASODN) targeting Pim-2 on cell proliferation of DU-145 cells. METHODS: Three ASODN targeting Pim-2 were designed and synthesized. After transfection with ASODN, cell proliferation was analyzed using an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. In addition, Pim-2 mRNA, protein levels, and cell cycles were examined. RESULTS: The ASODN designed and synthesized by our laboratory significantly reduced Pim-2 mRNA level and protein content in DU-145 cells. After transfection with ASODN for 48 h, a marked reduction in cell viability was observed in DU-145 cells in a dose-dependent manner. No remarkable apoptosis occurred in cells treated with ASODN compared with control cells. However, it should be noted that G1 phase arrest was clearly observed in ASODN-treated cells. CONCLUSION: ASODN targeting Pim-2 resulted in a marked reduction in DU-145 cell proliferation, and induction of G1 phase cell cycle arrest is one of the important mechanisms for ASODN to reduce cell growth. Moreover, antisense inhibition of Pim-2 expression provides a new promising therapy target for prostate cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Transfecção , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Fase G1 , Humanos , Masculino , Oligodesoxirribonucleotídeos Antissenso/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA