Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
Microbiol Spectr ; : e0000824, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860788

RESUMO

Redundant carbapenemase-producing (RCP) bacteria, which carry double or multiple carbapenemases, represent a new and concerning phenomenon. The objective of this study is to conduct a comprehensive analysis of the epidemiology and genetic mechanisms of RCP strains to support targeted surveillance and control measures. A retrospective analysis was conducted using surveillance data from 277 articles. Statistical analysis was performed to determine and evaluate species prevalence, proportions of carbapenemases, antibiotic susceptibility profiles, sample information, and patient outcomes. Complete plasmid sequencing data were utilized to investigate potential antimicrobial resistance or virulence advantages that strains may gain from acquiring redundant carbapenemases. RCP bacteria are widely distributed globally, and their prevalence is increasing over time. Several countries, including China, India, Iran, Turkey, and South Korea, have reported more than 100 RCP strains. The most commonly reported RCP species are Klebsiella pneumoniae and Acinetobacter baumannii, which exhibit varying proportions of carbapenemase combinations. Certain species-carbapenemase combinations, such as K. pneumoniae carrying New Delhi metallo-ß-lactamase (NDM) + oxacillinase (OXA) (56.76%) and K. pneumoniae carbapenemase (KPC) + Verona integron-encoded metallo-ß-lactamase (VIM) (50.00%) carbapenemases, are associated with high mortality rates. In patients with RCP strains isolated from the bloodstream and respiratory system, the mortality rates are 58.70% and 69.23%, respectively. Analysis of plasmids from RCP strains suggests that they may acquire additional antibiotic resistance phenotypes and virulence factors. Carbapenem-resistant bacteria carrying redundant carbapenemases pose a significant global health threat. This study provides valuable insights into the epidemiology and genetic mechanisms of these bacteria, supporting the development of effective control and prevention strategies to mitigate their transmission.IMPORTANCEThis study examined the global distribution patterns of 1,780 bacteria with double or multiple carbapenemases from 277 articles and assessed their clinical impact. The presence of multiple carbapenemases increases the chances of co-resistance to other classes of antibiotics and more virulence factors, further complicating the clinical management of infections.

2.
Fitoterapia ; 177: 106078, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897248

RESUMO

A group of previously undescribed diarylheptanoids with mono/di-glucose substitution, diodiarylheptosides A-F (1-6), together with six known diarylheptanoids (7-12) were isolated from the rhizomes of Dioscorea nipponica. Their structures were established by comprehensive UV, IR, HR-ESI-MS and NMR analyses, and their absolute configurations were determined by a comparison of calculated and experimental ECD, some with optical rotations, after acid-hydrolysis. Moreover, bioassay results showed that compounds 3 and 11 exhibited stronger NO inhibitions on lipopolysaccharides-induced RAW 264.7 cells, with the IC50 values of 14.91 ± 0.62 and 12.78 ± 1.12 µM.

3.
Pak J Pharm Sci ; 37(2): 321-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767099

RESUMO

Fatigue is a serious disturbance to human health, especially in people who have a severe disease such as cancer, or have been infected with COVID-19. Our research objective is to evaluate the anti-fatigue effect and mechanism of icariin through a mouse experimental model. Mice were treated with icariin for 30 days and anti-fatigue effects were evaluated by the weight-bearing swimming test, serum urea nitrogen test, lactic acid accumulation and clearance test in blood and the amount of liver glycogen. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-α) in the skeletal muscle of mice in each group were measured by western blotting. Results showed that icariin prolonged the weight-bearing swimming time of animals, reduced the serum urea nitrogen level after exercise, decreased the blood lactic acid concentration after exercise and increased the liver glycogen content observably. Compared to that in the control group, icariin upregulated AMPK and PGC1-α expression in skeletal muscle. Icariin can improve fatigue resistance in mice and its mechanism may be through improving the AMPK/PGC-1α pathway in skeletal muscle to enhance energy synthesis, decreasing the accumulation of metabolites and slowing glycogen consumption and decomposition.


Assuntos
Nitrogênio da Ureia Sanguínea , Fadiga , Flavonoides , Ácido Láctico , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Flavonoides/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Camundongos , Masculino , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Natação , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicogênio Hepático/metabolismo
4.
Front Neurol ; 15: 1378362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798710

RESUMO

Objective: Bronchial Asthma (BA) is a common chronic respiratory disease worldwide. Earlier research has demonstrated abnormal functional connectivity (FC) in multiple cognition-related cortices in asthma patients. The thalamus (Thal) serves as a relay center for transmitting sensory signals, yet the modifications in the thalamic FC among individuals with asthma remain uncertain. This research employed the resting-state functional connectivity (rsFC) approach to explore alterations in thalamic functional connectivity among individuals with BA. Patients and methods: After excluding participants who did not meet the criteria, this study finally included 31 patients with BA, with a gender distribution of 16 males and 15 females. Subsequently, we recruited 31 healthy control participants (HC) matched for age, gender, and educational background. All participants underwent the Montreal Cognitive Assessment (MoCA) and the Hamilton Depression Rating Scale (HAMD) assessment. Following this, both groups underwent head magnetic resonance imaging scans, and resting-state functional magnetic resonance imaging (rs-fMRI) data was collected. Based on the AAL (Automated Anatomical Labeling) template, the bilateral thalamic regions were used as seed points (ROI) for subsequent rsFC research. Pearson correlation analysis was used to explore the relationship between thalamic functional connectivity and neuropsychological scales in both groups. After controlling for potential confounding factors such as age, gender, intelligence, and emotional level, a two-sample t-test was further used to explore differences in thalamic functional connectivity between the two groups of participants. Result: Compared to the HC group, the BA group demonstrated heightened functional connectivity (FC) between the left thalamus and the left cerebellar posterior lobe (CPL), left postcentral gyrus (PCG), and right superior frontal gyrus (SFG). Concurrently, there was a decrease in FC with both the Lentiform Nucleus (LN) and the left corpus callosum (CC). Performing FC analysis with the right thalamus as the Region of Interest (ROI) revealed an increase in FC between the right thalamus and the right SFG as well as the left CPL. Conversely, a decrease in FC was observed between the right thalamus and the right LN as well as the left CC. Conclusion: In our study, we have verified the presence of aberrant FC patterns in the thalamus of BA patients. When compared to HCs, BA patients exhibit aberrant alterations in FC between the thalamus and various brain areas connected to vision, hearing, emotional regulation, cognitive control, somatic sensations, and wakefulness. This provides further confirmation of the substantial role played by the thalamus in the advancement of BA.

5.
J Hazard Mater ; 472: 134503, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718509

RESUMO

Research on the association between maternal PM2.5 exposure and hypospadias risk in male offspring, particularly in highly polluted areas, has been limited and inconsistent. This study leveraged data from China's National Population-based Birth Defects Surveillance System spanning the years 2013 to 2019, and employed sophisticated machine learning models to estimate daily PM2.5 levels and other pollutants for mothers at a 1-km resolution and a 6-km buffer surrounding maternal residences. Multivariate logistic regression analyses were performed to evaluate the relationship between PM2.5 exposure and hypospadias risk. For sensitivity analyses, stratification analysis was conducted, and models for one-pollutant and two-pollutants, as well as distributed lag nonlinear models, were constructed. Of the 1194,431 boys studied, 1153 cases of hypospadias were identified. A 10 µg/m3 increase in maternal PM2.5 exposure during preconception and the first trimester was associated with an elevated risk of isolated hypospadias, with Odds Ratios (ORs) of 1.102 (95% CI: 1.023-1.188) and 1.089 (95% CI: 1.007-1.177) at the 1-km grid, and 1.122 (95% CI: 1.034-1.218) and 1.143 (95% CI: 1.048-1.246) within the 6-km buffer. Higher quartiles of PM2.5 exposure were associated with increased odds ratios compared to the lowest quartile. These findings highlight a significant association between PM2.5 exposure during the critical conception period and an elevated risk of isolated hypospadias in children, emphasizing the need for targeted interventions to reduce PM2.5 exposure among expectant mothers.


Assuntos
Poluentes Atmosféricos , Hipospadia , Exposição Materna , Material Particulado , Hipospadia/epidemiologia , Humanos , Material Particulado/análise , Feminino , Masculino , Exposição Materna/efeitos adversos , China/epidemiologia , Gravidez , Adulto , Poluentes Atmosféricos/análise , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Recém-Nascido , População do Leste Asiático
6.
Environ Sci Pollut Res Int ; 31(24): 35149-35160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727972

RESUMO

An association between green space exposure and preterm birth has been reported. However, evidence on the joint effects of air pollutant and green space exposure on preterm birth from nationwide research is limited in China. Based on a nationwide cohort, this study aims to explore the effect of green space exposure on preterm birth and analyze the joint effects of green space and air pollutant. Logistic regression models were developed to analyze the effects of green space exposure, and interaction effects were evaluated by adding interaction terms between green space and air pollutants. From 2013 to 2019, this study included 2,294,188 records of newborn births, of which 82,921 were preterm births. The results show that for buffer zones with 250 m, 500 m, 1000 m, and 1500 m, every 0.1 unit increase in NDVI exposure was associated with a decrease in the risk of preterm birth by 5.5% (95% CI: 4.6-6.4%), 5.8% (95% CI: 4.9-6.6%), 6.1% (95% CI: 5.3-7.0%), and 5.6% (95% CI: 4.7-6.5%), respectively. Under high-level exposure to air pollutants, high-level NDVI exposure was more strongly negatively correlated with preterm birth than low-level NDVI exposure. High-level green space exposure might mitigate the adverse effect of air pollutants on preterm birth by promoting physical activity, reducing stress, and adsorbing pollutants. Further investigation is needed to explore how green space and air pollution interact and affect preterm birth, in order to improve risk management and provide a reference for newborn health.


Assuntos
Poluentes Atmosféricos , Nascimento Prematuro , Nascimento Prematuro/epidemiologia , China , Humanos , Poluição do Ar , Exposição Ambiental , Feminino , Recém-Nascido , Gravidez
7.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

8.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569310

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Hidrocarbonetos Policíclicos Aromáticos , Pirenos , Imunoensaio , Ferro , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
9.
J Inflamm Res ; 17: 2383-2397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660574

RESUMO

Objective: Keratoconus is a commonly progressive and blinding corneal disorder. Iron metabolism and oxidative stress play crucial roles in both keratoconus and ferroptosis. However, the association between keratoconus and ferroptosis is currently unclear. This study aimed to analyze and verify the role of ferroptosis-related genes (FRGs) in the pathogenesis of keratoconus through bioinformatics. Methods: We first obtained keratoconus-related datasets and FRGs. Then, the differentially expressed FRGs (DE-FRGs) associated with keratoconus were screened through analysis, followed by analysis of their biological functions. Subsequently, the LASSO and SVM-RFE algorithms were used to screen for diagnostic biomarkers. GSEA was performed to explore the potential functions of the marker genes. Finally, the associations between these biomarkers and immune cells were analyzed. qRT‒PCR was used to detect the expression of these biomarkers in corneal tissues. Results: A total of 39 DE-FRGs were screened, and functional enrichment analysis revealed that the DE-FRGs were closely related to apoptosis, oxidative stress, and the immune response. Then, using multiple algorithms, 6 diagnostic biomarkers were selected, and the ROC curve was used to verify their risk prediction ability. In addition, based on CIBERSORT analysis, alterations in the immune microenvironment of keratoconus patients might be associated with H19, GCH1, CHAC1, and CDKN1A. Finally, qRT‒PCR confirmed that the expression of H19 and CHAC1 was elevated in the keratoconus group. Conclusion: This study identified 6 DE-FRGs, 4 of which were associated with immune infiltrating cells, and established a diagnostic model with predictive value for keratoconus.

10.
Microorganisms ; 12(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38674690

RESUMO

Idesia polycarpa Maxim is an emerging oil plant species. Understanding its microecological characteristics and internal mechanisms can serve as a basis for field management and the screening and application of growth-promoting bacteria during the growth phase of young trees. This study used three-year-old young I. polycarpa to analyze the tree's root morphology, soil, and leaf nutrient status variations from May to October. In addition, differences in the rhizosphere soil, leaf metabolites, and microorganisms were observed. The results showed that, from May to October, the total nitrogen (TN) in the soil significantly decreased, whereas the TN, total potassium (TK), and total phosphorus (TP) in the leaves differed (p < 0.05). The leaf-dominant bacteria changed from Pseudomonadota to Firmicutes phylum. In addition, the relative abundance of soil and leaf-dominant bacteria decreased. The study found that the soil and leaf differential metabolites were mainly sugars and phenolic acids. The soil bacterial community showed a significant correlation with soil pH, available potassium (AK), available phosphorus (AP), and TN (p < 0.05). Further, the soil fungal community was significantly correlated with pH and AK (p < 0.001). TP, pH, and TK were the main factors influencing the leaf bacterial community, while the leaf fungal community was significantly correlated with five factors, including pH, TC, and TN. The root morphology was also mainly affected by pH, Pedomicrobium sp., Talaromyces sp., Penicillium sp., and D-Mannitol 2.

11.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609255

RESUMO

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Compostos de Manganês , Ouro , Peróxido de Hidrogênio , Luminol , Reprodutibilidade dos Testes , Imunoensaio , Óxidos , Paládio , Receptores de Hialuronatos
12.
Am J Transl Res ; 16(3): 916-924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586111

RESUMO

BACKGROUND: BRII-196 and BRII-198 are two recombinant human immunoglobulin (Ig) G1 monoclonal antibodies (mAbs) that non-competitively target distinct epitope regions within the receptor-binding domain (RBD) of the coronavirus spike glycoproteins. These antibodies are derived directly from human B cells of individuals who recovered from COVID-19. OBJECTIVE: To analyze the efficacy of BRII-196/BRII-198 in the treatment of coronavirus disease 2019 (COVID-19) vaccine breakthrough infections. METHODS: COVID-19 patients at high risk of progressing to severe and critical illness, with an initial SARS-CoV-2 immunoglobulin (Ig) G antibody level < 1.0 S/CO (detected within 24-48 hours post COVID-19 diagnosis), were treated with BRII-196/BRII-198 within three days of symptom onset. Treatment continued until the antibody level exceeded 1.0 S/CO. Patients whose absolute lymphocyte count (ALC) at first detection (within 24-48 h post-diagnosis) was < 0.8 × 109/L received thymalfasin therapy within three days of symptom onset, continuing until the ALC level surpassed 0.8 × 109/L. We determined the correlation of SARS-CoV-2 IgG antibody level and ALC with the condition of COVID-19 patients. Additionally, we analyzed the effects of BRII-196/BRII-198 on SARS-CoV-2 nucleic acid (NA) negative conversion, lymphocyte count recovery, and the change in SARS-CoV-2 IgG antibody level from the first positive NA test for SARS-CoV-2 to negative conversion in COVID-19 patients. RESULTS: A total of 61 cases of breakthrough infections were observed, classified as 10 mild cases, 31 ordinary cases, and 20 severe cases. Among these, 20%, 48.4% and 75% of the patients with mild, ordinary, and severe COVID-19, respectively, had initial SARS-CoV-2 IgG antibody level < 1.0 S/CO. Additionally, 0%, 35% and 70% had initial ALC < 0.8 × 109/L, respectively. Fifteen ordinary and 15 severe COVID-19 patients were treated with BRII-196/BRII-198. In severely infected patients, BRII-196/BRII-198 treatment showed statistically significant differences in NA negative conversion time and changes in SARS-CoV-2 IgG antibody levels (P < 0.05). However, in patients classified with ordinary severity, BRII-196/BRII-198 treatment did not lead to notable differences in NA negative conversion time or changes in SARS-CoV-2 IgG antibody level (P > 0.05). BRII-196/BRII-198 therapy was not associated with lymphocyte count recovery time in patients with either ordinary and/or severe COVID-19 (P > 0.05). CONCLUSIONS: The initial levels of SARS-CoV-2 IgG antibody and lymphocytes in fully vaccinated patients with breakthrough infections are inversely correlated with the severity of the disease. Early treatment with BRII-196/BRII-198 can shorten NA negative conversion time in severe COVID-19 patients and increase in vivo neutralizing antibody levels post-conversion, providing lasting protection. However, BRII-196/BRII-198 does not influence lymphocyte count recovery in patients with either ordinary and/or severe COVID-19.

13.
BMC Pediatr ; 24(1): 220, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561714

RESUMO

BACKGROUND: Sleep-disordered breathing (SDB) during childhood is common and includes a range of breathing abnormalities that range from primary snoring (PS) to obstructive sleep apnea syndrome (OSAS).Studies have shown that not only OSAS, but also PS, which is originally considered harmless, could cause cardiovascular, cognitive, behavioral, and psychosocial problems. Many researches are focused on the relation of OSA and serum lipid levels. However, little studies are focused on PS and serum lipid levels in children.We evaluated whether serum lipid (total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C)) concentrations were associated with specific components of SDB, including indices of oxygen reduction index, lowest oxygen saturation, mean oxygen saturation. And we explored whether serum lipid levels were associated with different degree sleep disordered (PS and OSA group) and obese. METHODS: This was a cross-sectional study. Children who were complained by their guardians with habitual snoring and(or) mouth breathing were collected in the SDB group. Normal children without sleep problem were matched in the control group. Subjects in the SDB group underwent polysomnography. The serum lipid profiles of all the children included TC, TG, HDL-C and LDL-C concentrations were measured by appropriate enzymatic assays. RESULTS: A total of 241 with Apnea/Hypopnea Index ≥ 5 (AHI) were assigned to the OSAS group and the remaining 155 with normal AHI were assigned to the PS group. The values of TC, TG, LDL-C and LDL/HDL were significantly higher in the OSAS group than in the PS group, and the values in the PS group were significantly higher than the control group. Multiple regression analysis revealed serum TG only correlated negatively with lowest oxygen saturation. Body mass index-z score has a positive effect on TG in all the 1310 children (P = 0.031) and in SDB 396 children(P = 0.012). The level of serum TG in obese group was significantly higher than that in non-obese group. CONCLUSIONS: SDB had a very obvious effect on blood lipids, whereas PS without apnea and hypoxia. Obese only affects the aggregation of TG. TRIAL REGISTRATION: ChiCTR1900026807(2019.10.23).


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Criança , Humanos , Ronco , Estudos de Casos e Controles , LDL-Colesterol , Estudos Transversais , Síndromes da Apneia do Sono/complicações , Apneia Obstrutiva do Sono/complicações , Triglicerídeos , HDL-Colesterol , Lipídeos , Obesidade/complicações , Hipóxia/etiologia
14.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474480

RESUMO

Since the discovery of classical chiral oxazoline ferrocene ligands in 1995, they have become pivotal in transition metal-catalyzed asymmetric transformations. Over the past decade, a notable evolution has been observed with the emergence of siloxane-substituted oxazoline ferrocenes, demonstrating significant potential as chiral ligands and catalysts. These compounds have consistently delivered exceptional results in diverse and mechanistically distinct transformations, surpassing the capabilities of classical oxazoline ferrocene ligands. This review meticulously delineates the research progress on siloxane-substituted oxazoline ferrocene compounds. It encompasses the synthesis of crucial precursors and desired products, highlights their achievements in asymmetric catalysis reactions, and delves into the exploration of the derivatization of these compounds, emphasizing the introduction of ionophilic groups and their impact on the recovery of transition metal catalysts. In addition to presenting the current state of knowledge, this review propels future research directions by identifying potential topics for further investigation concerning the siloxane-tagged derivatives. These derivatives are poised to be promising candidates for the next generation of highly efficient ligands and catalysts.

15.
ACS Nano ; 18(11): 7677-7687, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450654

RESUMO

Solid-state nanochannel-based sensing systems have been established as vigorous tools for sensing plentiful biomarkers due to their label-free, highly sensitive, and high-throughput screening. However, research on solid-state nanochannels has predominantly centered on the functional groups modified on the inner wall, neglecting investigations into the outer surface. Actually, the outer surface, as a part of the nanochannels, also plays a key role in regulating ionic current. When the target nears the entrance of the nanochannel and prepares to pass through, it would also interact with functional groups located on the nanochannel's outer surface, leading to subsequent alterations in the ionic current. Recently, the probes on the outer surface have experimentally demonstrated their ability to independently regulate ionic current, unveiling advantages in in situ target detection, especially for targets larger than the diameter of the nanochannels that cannot pass through them. Here, we review the progress over the past decade in nanochannels featuring diverse outer-surface functionalization aimed at enhanced sensing performance, including charge modification, wettability adjustment, and probe immobilization. In addition, we present the promises and challenges posed by outer-surface functionalized nanochannels and discuss possible directions for their future deployments.

16.
Acta Cardiol Sin ; 40(2): 191-199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532820

RESUMO

Background: Cardiovascular diseases are the leading cause of death among patients on hemodialysis, with approximately 40% of the cardiovascular deaths linked to acute coronary syndrome. We aimed to investigate the incidence and risk factors of acute coronary syndrome in patients undergoing hemodialysis. Methods: Patients undergoing hemodialysis were prospectively enrolled from January 2018. Data regarding hospitalization due to acute coronary syndrome were collected at 3-month intervals through December 31, 2021. Cox regression model was used to estimate the association between baseline factors and incident acute coronary syndrome during follow-up. Results: Patients' mean age was 66 years, 48% were men, and 16% had a history of coronary artery disease at enrolment. Over a median follow-up of 1,187 days, 85 patients were hospitalized due to acute coronary syndrome. Left main or triple vessel disease was identified in 67 patients. Risk factors associated with incident acute coronary syndrome included aging, male sex, smoking, low diastolic blood pressure, and baseline comorbidities, in addition to dialysis factors including low urea clearance, central venous catheter use, and history of dialysis access dysfunction. After multivariate analysis, age, diabetes, hyperlipidemia, smoking, and frequent interventions for vascular access remained significant risk factors. Conclusions: A high acute coronary syndrome incidence was observed in our cohort, with traditional risk factors playing a consistent role with that in the general population. A history of frequent dialysis access dysfunction was also associated with incident acute coronary syndrome.

17.
Pest Manag Sci ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488318

RESUMO

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.

18.
Exp Appl Acarol ; 92(3): 403-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489086

RESUMO

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Tetranychidae , Animais , Tetranychidae/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Pequim , Complexo IV da Cadeia de Transporte de Elétrons/genética
19.
J Nanobiotechnology ; 22(1): 51, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321547

RESUMO

BACKGROUND: Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS: Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION: This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.


Assuntos
Rinite Alérgica , Células Th1 , Humanos , Ratos , Animais , Camundongos , Preparações de Ação Retardada/farmacologia , Células Th2 , Rinite Alérgica/tratamento farmacológico , Citocinas , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Ovalbumina , Camundongos Endogâmicos BALB C
20.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323672

RESUMO

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Assuntos
Bombyx , Proteínas de Insetos , Nucleopoliedrovírus , Animais , Bombyx/enzimologia , Bombyx/genética , Bombyx/virologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/virologia , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofatores de Molibdênio , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Ácido Úrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA