Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Elife ; 122024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607670

RESUMO

While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.


Assuntos
Envelhecimento , Células-Tronco Neurais , Adulto , Recém-Nascido , Humanos , Divisão Celular , Hipocampo , Homeostase
2.
Phytochemistry ; 219: 113982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215812

RESUMO

Ten previously undescribed compounds were isolated from the fruits of Amomum tsao-ko (Zingiberaceae), including nine undescribed flavanol-fatty alcohol hybrids (1-6, 10-11, 13), and a flavanol-monoterpenoid hybrid (14), along with seven known flavanol hybrids (7-9, 12, 15-17). The structures of these compounds were determined using various analyses, such as HRESIMS, 1D/2D NMR, and ECD calculations. In terms of biological activity, compounds 1, 2, 5, and 6 exhibited inhibitions of human pancreatic lipase (HPL), with IC50 values ranging from 0.017 to 0.193 mM. Some of these values were found to be stronger than that of the positive control, orlistat (IC50, 0.067 mM). Molecular docking studies were also conducted to investigate the interactions between these compounds and HPL. The docking simulations revealed the importance of the orientation of the 3,4-dihydroxyphenyl in binding with HPL. Additionally, compound 9 demonstrated cytotoxicity against HepG2, with a CC50 value of 14.96 ± 0.62 µM as determined by the MTT assay. Flow cytometry analysis indicated that compound 9 induced apoptosis in HepG2 cells. Western blot results showed an up-regulation of apoptosis-related proteins, such as p53 protein, Bax and Caspase-3 proteins, while the expression of Bcl-2 protein was down-regulated.


Assuntos
Amomum , Humanos , Amomum/química , Álcoois Graxos/análise , Simulação de Acoplamento Molecular , Frutas/química , Lipase
3.
Protein Cell ; 15(3): 207-222, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758041

RESUMO

Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.


Assuntos
Células-Tronco Pluripotentes , Primatas , Animais , Macaca fascicularis , Engenharia Celular , Desenvolvimento Embrionário
4.
Nat Commun ; 14(1): 3917, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400444

RESUMO

Fetal stages are critical periods for brain development. However, the protein molecular signature and dynamics of the human brain remain unclear due to sampling difficulty and ethical limitations. Non-human primates present similar developmental and neuropathological features to humans. This study constructed a spatiotemporal proteomic atlas of cynomolgus macaque brain development from early fetal to neonatal stages. Here we showed that (1) the variability across stages was greater than that among brain regions, and comparisons of cerebellum vs. cerebrum and cortical vs. subcortical regions revealed region-specific dynamics across early fetal to neonatal stages; (2) fluctuations in abundance of proteins associated with neural disease suggest the risk of nervous disorder at early fetal stages; (3) cross-species analysis (human, monkey, and mouse) and comparison between proteomic and transcriptomic data reveal the proteomic specificity and genes with mRNA/protein discrepancy. This study provides insight into fetal brain development in primates.


Assuntos
Encéfalo , Proteômica , Animais , Encéfalo/metabolismo , Cerebelo , Desenvolvimento Fetal , Macaca fascicularis
5.
Molecules ; 28(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37175336

RESUMO

Artemisia argyi H. Lév. and Vaniot is a variety of Chinese mugwort widely cultured in central China. A. verlotorum Lamotte, another variety of Chinese mugwort, has been used in the southern region of China since ancient times. Despite their similar uses in traditional medicine, little is known about the differences in their active ingredients and potential benefits. Herein, the chemical compositions of the essential oils (EOs) from both varieties were analyzed using chromatography-mass spectrometry (GC-MS). A series of databases, such as the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), SuperPred database and R tool, were applied to build a networking of the EOs. Our results revealed significant differences in the chemical compositions of the two Artemisia EOs. However, we found that they shared similar ingredient-target-pathway networking with diverse bioactivities, such as neuroprotective, anti-cancer and anti-inflammatory. Furthermore, our protein connection networking analysis showed that transcription factor p65 (RELA), phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) and mitogen-activated protein kinase 1 (MAPK1) are crucial for the biological activity of Artemisia EOs. Our findings provided evidence for the use of A. verlotorum as Chinese mugwort in southern China.


Assuntos
Artemisia , Óleos Voláteis , Óleos Voláteis/química , Artemisia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Medicina Tradicional Chinesa
6.
J Ethnopharmacol ; 312: 116493, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS: We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS: LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 µg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION: LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Myrtaceae , Myrtus , Neuroblastoma , Óleos Voláteis , Humanos , Células Hep G2 , Proteína Supressora de Tumor p53/metabolismo , Óleos Voláteis/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Ciclinas/metabolismo , Ciclinas/farmacologia , Ciclinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
7.
Protein Cell ; 14(1): 37-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726760

RESUMO

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Assuntos
Antivirais , Vírus da Hepatite B , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , SARS-CoV-2 , Animais , Camundongos , Antivirais/farmacologia , COVID-19 , Interferon Tipo I/metabolismo , SARS-CoV-2/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/antagonistas & inibidores
8.
Front Microbiol ; 13: 883495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801108

RESUMO

Ulcerative colitis (UC) is a serious chronic intestinal inflammatory disease, with an increased incidence in recent years. The intestinal microbiota plays a key role in the pathogenesis of UC. However, there is no unified conclusion on how the intestinal microbiota changes. Most studies focus on the change between UC patients and healthy individuals, rather than the active and remission stage of the same patient. To minimize the influences of genetic differences, environmental and dietary factors, we studied the intestinal microbiota of paired fecal samples from 42 UC patients at the active and remission stages. We identified 175 species of microbes from 11 phyla and found no difference of the alpha and beta diversities between the active and remission stages. Paired t-test analysis revealed differential microbiota at levels of the phyla, class, order, family, genus, and species, including 13 species with differential abundance. For example, CAG-269 sp001916005, Eubacterium F sp003491505, Lachnospira sp000436475, et al. were downregulated in the remission, while the species of Parabacteroides distasonis, Prevotellamassilia sp900540885, CAG-495 sp001917125, et al. were upregulated in the remission. The 13 species can effectively distinguish the active and remission stages. Functional analysis showed that the sporulation and biosynthesis were downregulated, and the hydrogen peroxide catabolic process was upregulated in remission of UC. Our study suggests that the 13 species together may serve as a biomarker panel contributing to identify the active and remission stages of UC, which provides a valuable reference for the treatment of UC patients by FMT or other therapeutic methods.

9.
Sci Adv ; 8(29): eabo3123, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867792

RESUMO

We report the cloning of a 12-year-old transgenic green fluorescent protein (GFP) monkey by somatic cell nuclear transfer (SCNT) and base editing of the embryos, accompanied with safety evaluation of adenine base editors (ABEs). We first show the ability of ABEmax to silence GFP through A-to-G editing of the GFP sequence in 293T cells. Subsequently, using donor cells from a monkey expressing GFP, we have successfully generated 207 ABEmax-edited (SCNT-ABE) and 87 wild-type (SCNT) embryos for embryo transfer, genotyping, and genome and transcriptome analysis. SCNT-ABE and SCNT embryos are compared for off-target analysis without the interference of genetic variants using a new method named as OA-SCNT. ABEmax does not induce obvious off-target DNA mutations but induces widespread off-target RNA mutations, 35% of which are exonic, in edited monkey embryos. These results provide important references for clinical application of ABE.


Assuntos
Clonagem de Organismos , Edição de Genes , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Clonagem de Organismos/métodos , Edição de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Macaca mulatta/genética
10.
Gene ; 829: 146501, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35452709

RESUMO

Aging is a complex life process that human organs and tissues steadily and continuously decline. Aging has huge heterogeneity, which shows different aging rates among different individuals and in different tissues of the same individual. Many studies of aging are often contradictory and show little common signature. The integrated analysis of these transcriptome datasets will provide an unbiased global view of the aging process. Here, we integrated 8 transcriptome datasets including 757 samples from healthy human blood to study aging from three aspects of gene expression, mutations, and alternative splicing. Surprisingly, we found that transcriptome changes in blood are relatively independent of the chronological age. Further pseudotime analysis revealed two different aging paths (AgingPath1 and AgingPath2) in human blood. The differentially expressed genes (DEGs) along the two paths showed a limited overlap and are enriched in different biological processes. The mutations of DEGs in AgingPath1 are significantly increased in the aging process, while the opposite trend was observed in AgingPath2. Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analysis identified 304 important mutations that can affect both gene expression and alternative splicing during aging. Finally, by comparison between aging and Alzheimer's disease, we identified 37 common DEGs in AgingPath1, AgingPath2 and Alzheimer's disease. These genes may contribute to the shift from aging state to Alzheimer's disease. In summary, this study revealed the two aging paths and the related genes and mutations, which provides a new insight into aging and aging-related disease.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Humanos , Mutação , Transcriptoma
11.
Aging (Albany NY) ; 14(3): 1448-1472, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150482

RESUMO

Bacterial infection is one of the most important factors affecting the human life span. Elderly people are more harmed by bacterial infections due to their deficits in immunity. Because of the lack of new antibiotics in recent years, bacterial resistance has increasingly become a serious problem globally. In this study, an antibacterial compound predictor was constructed using the support vector machines and random forest methods and the data of the active and inactive antibacterial compounds from the ChEMBL database. The results showed that both models have excellent prediction performance (mean accuracy >0.9 and mean AUC >0.9 for the two models). We used the predictor to screen potential antibacterial compounds from FDA-approved drugs in the DrugBank database. The screening results showed that 1087 small-molecule drugs have potential antibacterial activity and 154 of them are FDA-approved antibacterial drugs, which accounts for 76.2% of the approved antibacterial drugs collected in this study. Through molecular fingerprint similarity analysis and common substructure analysis, we screened 8 predicted antibacterial small-molecule compounds with novel structures compared with known antibacterial drugs, and 5 of them are widely used in the treatment of various tumors. This study provides a new insight for predicting antibacterial compounds by using approved drugs, the predicted compounds might be used to treat bacterial infections and extend lifespan.


Assuntos
Antibacterianos , Aprendizado de Máquina , Idoso , Antibacterianos/farmacologia , Humanos , Máquina de Vetores de Suporte
12.
BMC Genomics ; 23(1): 76, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073842

RESUMO

BACKGROUND: Leeches are classic annelids that have a huge diversity and are closely related to people, especially medicinal leeches. Medicinal leeches have been widely utilized in medicine based on the pharmacological activities of their bioactive ingredients. Comparative genomic study of these leeches enables us to understand the difference among medicinal leeches and other leeches and facilitates the discovery of bioactive ingredients. RESULTS: In this study, we reported the genome of Whitmania pigra and compared it with Hirudo medicinalis and Helobdella robusta. The assembled genome size of W. pigra is 177 Mbp, close to the estimated genome size. Approximately about 23% of the genome was repetitive. A total of 26,743 protein-coding genes were subsequently predicted. W. pigra have 12346 (46%) and 10295 (38%) orthologous genes with H. medicinalis and H. robusta, respectively. About 20 and 24% genes in W. pigra showed syntenic arrangement with H. medicinalis and H. robusta, respectively, revealed by gene synteny analysis. Furthermore, W. pigra, H. medicinalis and H. robusta expanded different gene families enriched in different biological processes. By inspecting genome distribution and gene structure of hirudin, we identified a new hirudin gene g17108 (hirudin_2) with different cysteine patterns. Finally, we systematically explored and compared the active substances in the genomes of three leech species. The results showed that W. pigra and H. medicinalis exceed H. robusta in both kinds and gene number of active molecules. CONCLUSIONS: This study reported the genome of W. pigra and compared it with other two leeches, which provides an important genome resource and new insight into the exploration and development of bioactive molecules of medicinal leeches.


Assuntos
Hirudo medicinalis , Sanguessugas , Animais , Genoma , Genômica , Hirudo medicinalis/genética , Humanos , Sanguessugas/genética
13.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615401

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, is spreading rapidly and has caused hundreds of millions of infections and millions of deaths worldwide. Due to the lack of specific vaccines and effective treatments for COVID-19, there is an urgent need to identify effective drugs. Traditional Chinese medicine (TCM) is a valuable resource for identifying novel anti-SARS-CoV-2 drugs based on the important contribution of TCM and its potential benefits in COVID-19 treatment. Herein, we aimed to discover novel anti-SARS-CoV-2 compounds and medicinal plants from TCM by establishing a prediction method of anti-SARS-CoV-2 activity using machine learning methods. We first constructed a benchmark dataset from anti-SARS-CoV-2 bioactivity data collected from the ChEMBL database. Then, we established random forest (RF) and support vector machine (SVM) models that both achieved satisfactory predictive performance with AUC values of 0.90. By using this method, a total of 1011 active anti-SARS-CoV-2 compounds were predicted from the TCMSP database. Among these compounds, six compounds with highly potent activity were confirmed in the anti-SARS-CoV-2 experiments. The molecular fingerprint similarity analysis revealed that only 24 of the 1011 compounds have high similarity to the FDA-approved antiviral drugs, indicating that most of the compounds were structurally novel. Based on the predicted anti-SARS-CoV-2 compounds, we identified 74 anti-SARS-CoV-2 medicinal plants through enrichment analysis. The 74 plants are widely distributed in 68 genera and 43 families, 14 of which belong to antipyretic detoxicate plants. In summary, this study provided several medicinal plants with potential anti-SARS-CoV-2 activity, which offer an attractive starting point and a broader scope to mine for potentially novel anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , SARS-CoV-2 , Quimioinformática , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Aprendizado de Máquina
14.
Mol Biol Evol ; 38(12): 5472-5479, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34469542

RESUMO

Bitter taste receptors serve as a vital component in the defense system against toxin intake by animals, and the family of genes encoding these receptors has been demonstrated, usually by family size variance, to correlate with dietary preference. However, few systematic studies of specific Tas2R to unveil their functional evolution have been conducted. Here, we surveyed Tas2R16 across all major clades of primates and reported a rare case of a convergent change to increase sensitivity to ß-glucopyranosides in human and a New World monkey, the white-faced saki. Combining analyses at multiple levels, we demonstrate that a parallel amino acid substitution (K172N) shared by these two species is responsible for this functional convergence of Tas2R16. Considering the specialized feeding preference of the white-faced saki, the K172N change likely played an important adaptive role in its early evolution to avoid potentially toxic cyanogenic glycosides, as suggested for the human TAS2R16 gene.


Assuntos
Platirrinos , Paladar , Substituição de Aminoácidos , Animais , Glucosídeos , Humanos , Platirrinos/genética , Platirrinos/metabolismo , Receptores Acoplados a Proteínas G/genética , Paladar/genética
16.
Aging (Albany NY) ; 13(8): 11833-11859, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885377

RESUMO

Transcriptome differences between Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL), which are all derived from B cell, remained unclear. This study aimed to construct lymphoma-specific diagnostic models by screening lymphoma marker genes. Transcriptome data of HL, DLBCL, and MCL were obtained from public databases. Lymphoma marker genes were screened by comparing cases and controls as well as the intergroup differences among lymphomas. A total of 9 HL marker genes, 7 DLBCL marker genes, and 4 MCL marker genes were screened in this study. Most HL marker genes were upregulated, whereas DLBCL and MCL marker genes were downregulated compared to controls. The optimal HL-specific diagnostic model contains one marker gene (MYH2) with an AUC of 0.901. The optimal DLBCL-specific diagnostic model contains 7 marker genes (LIPF, CCDC144B, PRO2964, PHF1, SFTPA2, NTS, and HP) with an AUC of 0.951. The optimal MCL-specific diagnostic model contains 3 marker genes (IGLV3-19, IGKV4-1, and PRB3) with an AUC of 0.843. The present study reveals the transcriptome data-based differences between HL, DLBCL, and MCL, when combined with other clinical markers, may help the clinical diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais/genética , Doença de Hodgkin/diagnóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma de Célula do Manto/diagnóstico , Modelos Genéticos , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/genética , Doença de Hodgkin/mortalidade , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/mortalidade , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Transcriptoma/genética
17.
Cell ; 184(8): 2020-2032.e14, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861963

RESUMO

Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.


Assuntos
Quimerismo , Embrião de Mamíferos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Macaca fascicularis , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , RNA-Seq , Análise de Célula Única , Transcriptoma
18.
Sci Prog ; 104(1): 368504211001146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754896

RESUMO

The ubiquitin-proteasome system (UPS) plays crucial roles in numerous cellular functions. Dysfunction of the UPS shows certain correlations with the pathological changes in Alzheimer's disease (AD). This study aimed to explore the different impairments of the UPS in multiple brain regions and identify hub ubiquitin ligase (E3) genes in AD. The brain transcriptome, blood transcriptome and proteome data of AD were downloaded from a public database. The UPS genes were collected from the Ubiquitin and Ubiquitin-like Conjugation Database. The hub E3 genes were defined as the differentially expressed E3 genes shared by more than three brain regions. E3Miner and UbiBrowser were used to predict the substrate of hub E3. This study shows varied impairment of the UPS in different brain regions in AD. Furthermore, we identify seven hub E3 genes (CUL1, CUL3, EIF3I, NSMCE1, PAFAH1B1, RNF175, and UCHL1) that are downregulated in more than three brain regions. Three of these genes (CUL1, EIF3I, and NSMCE1) showed consistent low expression in blood. Most of these genes have been reported to promote AD, whereas the impact of RNF175 on AD is not yet reported. Further analysis revealed a potential regulatory mechanism by which hub E3 and its substrate genes may affect transcription functions and then exacerbate AD. This study identified seven hub E3 genes and their substrate genes affect transcription functions and then exacerbate AD. These findings may be helpful for the development of diagnostic biomarkers and therapeutic targets for AD.


Assuntos
Doença de Alzheimer , Ubiquitina-Proteína Ligases , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Front Microbiol ; 12: 812391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222310

RESUMO

Combinational antiretroviral therapy (cART) is the most effective tool to prevent and control HIV-1 infection without an effective vaccine. However, HIV-1 drug resistance mutations (DRMs) and naturally occurring polymorphisms (NOPs) can abrogate cART efficacy. Here, we aimed to characterize the HIV-1 pol mutation landscape in Cameroon, where highly diverse HIV clades circulate, and identify novel treatment-associated mutations that can potentially affect cART efficacy. More than 8,000 functional Cameroonian HIV-1 pol sequences from 1987 to 2020 were studied for DRMs and NOPs. Site-specific amino acid frequencies and quaternary structural features were determined and compared between periods before (≤2003) and after (2004-2020) regional implementation of cART. cART usage in Cameroon induced deep mutation imprints in reverse transcriptase (RT) and to a lower extent in protease (PR) and integrase (IN), according to their relative usage. In the predominant circulating recombinant form (CRF) 02_AG (CRF02_AG), 27 canonical DRMs and 29 NOPs significantly increased or decreased in RT during cART scale-up, whereas in IN, no DRM and only seven NOPs significantly changed. The profound genomic imprints and higher prevalence of DRMs in RT compared to PR and IN mirror the dominant use of reverse transcriptase inhibitors (RTIs) in sub-Saharan Africa and the predominantly integrase strand transfer inhibitor (InSTI)-naïve study population. Our results support the potential of InSTIs for antiretroviral treatment in Cameroon; however, close surveillance of IN mutations will be required to identify emerging resistance patterns, as observed in RT and PR. Population-wide genomic analyses help reveal the presence of selective pressures and viral adaptation processes to guide strategies to bypass resistance and reinstate effective treatment.

20.
BMC Bioinformatics ; 21(1): 409, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938389

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA