Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121475, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38905792

RESUMO

Many urban water bodies grapple with low flow flux and weak hydrodynamics. To address these issues, projects have been implemented to form integrated urban water bodies via interconnecting artificial lake or ponds with rivers, but causing pollution accumulation downstream and eutrophication. Despite it is crucial to assess eutrophication, research on this topic in urban interconnected water bodies is limited, particularly regarding variability and feasible strategies for remediation. This study focused on the Loucun river in Shenzhen, comprising an pond, river and artificial lake, evaluating water quality changes pre-(post-)ecological remediation and establishing a new method for evaluating the water quality index (WQI). The underwater forest project, involving basement improvement, vegetation restoration, and aquatic augmentation, in the artificial lake significantly reduced total nitrogen (by 43.58%), total phosphorus (by 79.17%) and algae density (by 36.90%) compared to pre-remediation, effectively controlling algal bloom. Rainfall, acting as a variable factor, exacerbated downstream nutrient accumulation, increasing total phosphorus by 4.56 times and ammonia nitrogen by 1.30 times compared to the dry season, and leading to algal blooms in the non-restoration pond. The improved WQI method effectively assesses water quality status. The interconnected water body exhibits obvious nutrient accumulation in downstream regions. A combined strategy that reducing nutrient and augmenting flux was verified to alleviate accumulation of nutrients downstream. This study provides valuable insights into pollution management strategies for interconnected pond-river-lake water bodies, offering significant reference for nutrient mitigation in such urban water bodies.

2.
Sci Total Environ ; 844: 157112, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787897

RESUMO

The process and management of red tide in oligotrophic waters are poorly understood as most studies on red tide were focused on eutrophic areas. In this study, 404 red tide events together with the historical water quality dynamics during 1991-2020 were investigated in an anthropogenically influenced bay in China - Mirs Bay, whose most region is oligotrophic except small inshore areas. Red tides of oligotrophic offshore accounted for 20 % of all. With the effective governmental management on inshore areas, concentration of PO4 and DIN has been decreased to a low level (PO4 <0.01 mg/L while DIN <0.1 mg/L) in the bay since about 2000. However, the reduction of nutrients was still accompanied by the frequent outbreaks of red tides, as well as a shift of dominant algae from diatoms to dinoflagellates, which might be due to the unbalanced nutrient reduction, such as N:P ratio fluctuation and organic nutrient increase. This shift might trigger more red tide events and even some super ones (long-duration or large-scale) in oligotrophic areas. Detailed analysis on red tide events combined with model simulation proved that the outbreak of red tide in Mirs Bay was caused by the joint contribution of nutrients and hydrodynamics. Nutrients of inshore area supported the red tides there, and with the help of physical conditions, red tides inshore could be transferred to offshore areas and then were likely to bloom again or be preyed to support blooms of other organisms. This study acknowledged that the reduction of both N and P either inorganic or organic nutrients was essential to control red tides, even in oligotrophic waters, but a balanced strategy considering the dual reduction of both nitrogen and phosphorus was of pivotal role to restore the health of coastal water systems disturbed by human.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Baías , China , Humanos , Nitrogênio/análise , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA