Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
2.
Natl Sci Rev ; 8(9): nwaa286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691728

RESUMO

Synthetic lethality was proposed nearly a century ago by geneticists and recently applied to develop precision anti-cancer therapies. To exploit the synthetic lethality concept in the design of chemical anti-cancer agents, we developed a bio-orthogonally catalyzed lethality (BCL) strategy to generate targeting anti-tumor metallodrugs both in vitro and in vivo. Metallodrug Ru-rhein was generated from two non-toxic species Ru-N3 and rhein-alkyne via exclusive endogenous copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction without the need of an external copper catalyst. The non-toxic species Ru-arene complex Ru-N3 and rhein-alkyne were designed to perform this strategy, and the mitochondrial targeting product Ru-rhein was generated in high yield (>83%) and showed high anti-tumor efficacy in vitro. This BCL strategy achieved a remarkable tumor suppression effect on the tumor-bearing mice models. It is interesting that the combination of metal-arene complexes with rhein via CuAAC reaction could transform two non-toxic species into a targeting anti-cancer metallodrug both in vitro and in vivo, while the product Ru-rhein was non-toxic towards normal cells. This is the first example that exclusive endogenous copper was used to generate metal-based anti-cancer drugs for cancer treatment. The anti-cancer mechanism of Ru-rhein was studied and autophagy was induced by increased reactive oxygen species and mitochondrial damage. The generality of this BCL strategy was also studied and it could be extended to other metal complexes such as Os-arene and Ir-arene complexes. Compared with the traditional methods for cancer treatment, this work presented a new approach to generating targeting metallodrugs in vivo via the BCL strategy from non-toxic species in metal-based chemotherapy.

3.
Biomaterials ; 261: 120311, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32911091

RESUMO

The treatment options of liver fibrosis remain limited except for liver transplantation due to the complexity and slow development in its progression. Besides, liver fibrosis recurrence and intervention time have not been reported as significant indicators to affect the anti-fibrotic efficacy of tested drugs/strategies. Herein, a novel fluoropolymer is developed to achieve high drug loading of sorafenib and efficient delivery of miR155 inhibitor (anti-miR155) for dual-targeting of hepatic stellate cells (HSCs) and kupffer cells (KCs), and we report a detailed plan on the design of treatment regimen to reveal the relationship between chemogene therapy, intervention time and fibrosis recurrence. Such a combined chemo-gene therapy of sorafenib and anti-miR155 can achieve superior therapeutic efficiency by polarizing the pro-inflammatory M1 to anti-inflammatory M2 of KCs and inhibiting the proliferation of HSCs. Importantly, efficacy and recurrence prevention of chemogene therapy earlier in the liver fibrosis will be more effective than the treatment at later stage. In conclusion, this work proposes a novel strategy to improve the efficacy and prevent recurrence of liver fibrosis by dual-regulating of KCs and HSCs, and emphasizes the importance of therapy earlier in the treatment of liver fibrosis.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Fibrose , Terapia Genética , Humanos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA