Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337888

RESUMO

Nitrogen (N) is one of the most crucial elements for plant growth. However, a deficiency of N affects plant growth and development. Wedelia trilobata is a notorious invasive plant species that exhibits superior tolerance to adapt to environmental stresses. Yet, research on the growth and antioxidant defensive system of invasive Wedelia under low N stress, which could contribute to understanding invasion mechanisms, is still limited. Therefore, this study aims to investigate and compare the tolerance capability of invasive and native Wedelia under low and normal N conditions. Native and invasive Wedelia species were grown in normal and low-N conditions using a hydroponic nutrient solution for 8 weeks to assess the photosynthetic parameters, antioxidant activity, and localization of reactive oxygen species (ROS). The growth and biomass of W. trilobata were significantly (p < 0.05) higher than W. chinensis under low N. The leaves of W. trilobata resulted in a significant increase in chlorophyll a, chlorophyll b, and total chlorophyll content by 40.2, 56.2, and 46%, respectively, compared with W. chinensis. W. trilobata significantly enhanced antioxidant defense systems through catalase, peroxidase, and superoxide dismutase by 18.6%, 20%, and 36.3%, respectively, providing a positive response to oxidative stress caused by low N. The PCA analysis showed that W. trilobata was 95.3% correlated with physiological traits by Dim1 (79.1%) and Dim2 (16.3%). This study provides positive feedback on W. trilobata with respect to its comprehensive invasion mechanism to improve agricultural systems via eco-friendly approaches in N deficit conditions, thereby contributing to the reclamation of barren land.

2.
Ecol Appl ; 34(1): e2811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36708137

RESUMO

Biological invasions have become a worldwide problem, and measures to efficiently prevent and control invasions are still in development. Like many other parts of the world, China is undergoing a dramatic increase in plant invasions. Most of the currently 933 established (i.e., naturalized) plant species, of which 214 are categorized as invasive, have been introduced into China for cultivation. It is likely that many of those species are still being traded, particularly online, by plant nurseries. However, studies assessing whether naturalized and invasive species are currently being traded more or less than nonnaturalized aliens are rare. We extracted online-trade information for 13,718 cultivated alien plant taxa on 1688.com, the largest website for domestic B2B in China. We analyzed how the presence in online-nursery catalogs, the number of online nurseries that offerred the species for sale, and the product type (i.e., seeds, live plants and vegetative organs) differed among nonnaturalized, naturalized noninvasive, and invasive species. Compared to nonnaturalized taxa, naturalized noninvasive and invasive taxa were 3.7-5.2 times more likely to be available for purchase. Naturalized noninvasive and invasive taxa were more frequently offered as seeds by online nurseries, whereas nonnaturalized taxa were more frequently offered as live plants. Based on these findings, we propose that, to reduce the further spread of invasive and potentially invasive plants, implementation of plant-trade regulations and a monitoring system of the online horticultural supply chain will be essential.


Assuntos
Espécies Introduzidas , Plantas , Sementes , Comércio , China
3.
Ecotoxicol Environ Saf ; 264: 115419, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651793

RESUMO

Cadmium (Cd) is one of the toxic heavy metal that negatively affect plant growth and compromise food safety for human consumption. Nitrogen (N) is an essential macronutrient for plant growth and development. It may enhance Cd tolerance of invasive plant species by maintaining biochemical and physiological characteristics during phytoextraction of Cd. A comparative study was conducted to evaluate the phenotypical and physiological responses of invasive W. trilobata and native W. chinensis under low Cd (10 µM) and high Cd (80 µM) stress, along with different N levels (i.e., normal 91.05 mg kg-1 and low 0.9105 mg kg-1). Under low-N and Cd stress, the growth of leaves, stem and roots in W. trilobata was significantly increased by 35-23%, 25-28%, and 35-35%, respectively, compared to W. chinensis. Wedelia trilobata exhibited heightened antioxidant activities of catalase and peroxidase were significantly increased under Cd stress to alleviate oxidative stress. Similarly, flavonoid content was significantly increased by 40-50% in W. trilobata to promote Cd tolerance via activation of the secondary metabolites. An adverse effect of Cd in the leaves of W. chinensis was further verified by a novel hyperspectral imaging technology in the form of normalized differential vegetation index (NDVI) and photochemical reflectance index (PRI) compared to W. trilobata. Additionally, W. trilobata increased the Cd tolerance by regulating Cd accumulation in the shoots and roots, bolstering its potential for phytoextraction potential. This study demonstrated that W. trilobata positively responds to Cd with enhanced growth and antioxidant capabilities, providing a new platform for phytoremediation in agricultural lands to protect the environment from heavy metals pollution.


Assuntos
Asteraceae , Wedelia , Humanos , Cádmio/toxicidade , Solo , Nitrogênio , Antioxidantes , Metais
4.
Front Plant Sci ; 14: 1175097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360736

RESUMO

Drought stress can significantly affect plant growth and development. Biochar (BC) and plant growth-promoting rhizobacteria (PGPR) have been found to increase plant fertility and development under drought conditions. The single effects of BC and PGPR in different plant species have been widely reported under abiotic stress. However, there have been relatively few studies on the positive role of PGPR, BC, and their combination in barley (Hordeum vulgare L.). Therefore, the current study investigated the effects of BC from Parthenium hysterophorus, drought tolerant PGPR (Serratia odorifera), and the combination of BC + PGPR on the growth, physiology, and biochemical traits of barley plants under drought stress for two weeks. A total of 15 pots were used under five treatments. Each pot of 4 kg soil comprised the control (T0, 90% water), drought stress alone (T1, 30% water), 35 mL PGPR/kg soil (T2, 30% water), 2.5%/kg soil BC (T3, 30% water), and a combination of BC and PGPR (T4, 30% water). Combined PGPR and BC strongly mitigated the negative effects of drought by improving the shoot length (37.03%), fresh biomass (52%), dry biomass (62.5%), and seed germination (40%) compared to the control. The PGPR + BC amendment treatment enhanced physiological traits, such as chlorophyll a (27.9%), chlorophyll b (35.3%), and total chlorophyll (31.1%), compared to the control. Similarly, the synergistic role of PGPR and BC significantly (p< 0.05) enhanced the antioxidant enzyme activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) to alleviate the toxicity of ROS. The physicochemical properties (N, K, P, and EL) of the soils were also enhanced by (85%, 33%, 52%, and 58%) respectively, under the BC + PGPR treatment compared to the control and drought stress alone. The findings of this study have suggested that the addition of BC, PGPR, and a combination of both will improve the soil fertility, productivity, and antioxidant defense systems of barley under drought stress. Therefore, BC from the invasive plant P. hysterophorus and PGPR can be applied to water-deficient areas to improve barley crop production.

5.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299065

RESUMO

The rhizosphere plays a vital role in the exchange of materials in the soil-plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native A. sessilis. We conducted a control experiment to test the effects of these bacteria on the growth and competition of the two plant species using sterile seedlings. Our findings showed that the rhizobacteria strain isolated from A. sessilis significantly promoted the growth of invasive A. philoxeroides in monoculture compared to native A. sessilis. Both strains significantly enhanced the growth and competitiveness of invasive A. philoxeroides under competition conditions, regardless of their host source. Our study suggests that rhizosphere bacteria, including those from different host sources, can contribute to the invasion of A. philoxeroides by significantly enhancing its competitiveness.

6.
Plants (Basel) ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840073

RESUMO

Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.

7.
Plants (Basel) ; 11(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501409

RESUMO

The role of the interactions between endophytes and host plants is unclear in invasive plants from different geographical latitudes. In this study, we aimed to explore the relationship between endophytic microbes and the functional traits of the invasive plant Wedelia trilobata. We explored the relationship between endophytes and the clonal growth traits of the invasive clonal plant Wedelia trilobata from different geographical latitudes using high-throughput sequencing technology and a common garden-planting experiment. We found that: (1) Different W. trilobata populations had similar endophytic fungi but different endophytic bacteria. However, no latitudinal variation pattern of the overall microbial community was found; (2) plant clonal growth performance (i.e., spacer length) was significantly correlated with endophytic bacterial diversity but not fungal diversity; and (3) the latitudinal variation pattern of the plant clonal growth performance of W. trilobata populations was found in pre-cultivated (i.e., wild) individuals but disappeared in post-cultivated W. trilobata. Our results suggest both environmental adaptability and the endophytic bacterial community are linked to the functional traits of the invasive clonal plant W. trilobata, and these functional traits tend to increase its invasiveness, which may enhance its invasion success.

8.
Genetica ; 150(1): 13-26, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031940

RESUMO

Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.


Assuntos
Asteraceae , Ecossistema , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Espécies Introduzidas , Singapura , Transcriptoma
9.
Environ Pollut ; 267: 115649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254657

RESUMO

Invasive plants readily invade metal-contaminated areas. The hyperaccumulation of toxic heavy metals is not an uncommon feature among plant species. Although several hypotheses were proposed to explain this phenomenon, it is currently unclear how hyperaccumulation may benefit plants. The invasive Crofton weed (Ageratina adenophora) is a known hyperaccumulator of chromium and lead. We previously found that the species can also hyperaccumulate cadmium. The role of phytoaccumulation in defense to pathogen attack is unclear. We inoculated A. adenophora plants with a common generalist pathogen (Rhizoctonia solani) to test its resistance under cadmium treatment. We found evidence that cadmium hyperaccumulation reduced pathogen infection in A. adenophora. Our findings indicate elemental defense is highly cost efficient for hyperaccumulators inhabiting metal-contaminated sites, where plants were only modestly affected by cadmium. The reduction in pathogen damage conferred by cadmium was relatively high, particularly under lower cadmium levels. However, the benefits at higher levels may be capped. Elemental defense may be a key mechanism for plant invasion into polluted sites, especially in regions with widespread industrial activity. Our study highlights the importance of testing different metal concentrations when testing plant resistance and the importance of considering enemy attack when selecting plants for phytoremediation.


Assuntos
Ageratina , Metais Pesados , Biodegradação Ambiental , Cádmio , Cromo , Intoxicação por Metais Pesados , Humanos , Metais
10.
Oecologia ; 192(2): 415-423, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865483

RESUMO

The Novel Defense Hypothesis predicts that introduced plants may possess novel allelochemicals which act as a defense against native generalist enemies. Here, we aim to test if the chemicals involved in allelopathy in the invasive plant Wedelia trilobata can contribute to higher resistance against generalist herbivore and pathogen enemies by comparing with its native congener W. chinensis in controlled laboratory conditions. The allelopathic effects of the leaf extract from W. trilobata on the generalist enemies were also assessed. We showed that the larvae of two moth species preferred W. chinensis over W. trilobata. The growth rate of larvae feeding on W. trilobata leaves was significantly lower than those feeding on W. chinensis leaves. When detached leaves were inoculated with phytopathogens, the infected leaf area of W. trilobata was significantly smaller than that of W. chinensis. In addition, the leaf extract of W. trilobata also effectively inhibited the growth of the larvae and the mycelial growth of the phytopathogens. Our results indicate that the defenses of invasive W. trilobata against generalist herbivore and pathogen enemies are stronger than that of its native congener, which may be attributed to the allelopathic effects. This study provides novel insights that can comprehensively link the Novel Defense, Behavioral Constraint and Enemy Release hypotheses. These combined hypotheses would explain how invasive plants escape from their natural specialist enemies, where their allelopathic chemicals may deter herbivorous insects and inhibit pathogen infection.


Assuntos
Asteraceae , Wedelia , Alelopatia , Animais , Herbivoria , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA