Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123858

RESUMO

Distributed drive electric vehicles improve steering response and enhance overall vehicle stability by independently controlling each motor. This paper introduces a control framework based on Adaptive Model Predictive Control (AMPC) for coordinating handling stability, consisting of three layers: the dynamic supervision layer, online optimization layer, and low-level control layer. The dynamic supervision layer considers the yaw rate and maneuverability limits when establishing the ß-ß˙ phase plane stability boundary and designs variable weight factors based on this stability boundary. The online optimization layer constructs the target weight-adaptive AMPC strategy, which can adjust the control weights for maneuverability and lateral stability in real time based on the variable weight factors provided by the dynamic supervision layer. The low-level control layer precisely allocates the driver's requested driving force and additional yaw moment by using torque distribution error and tire utilization as the cost function. Finally, experiments are conducted on a Simulink-CarSim co-simulation platform to assess the performance of AMPC. Simulation results show that, compared to the traditional MPC strategy, this control strategy not only enhances maneuverability under normal conditions but also improves lateral stability control under extreme conditions.

2.
J Chromatogr A ; 1734: 465290, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39181096

RESUMO

In this study, the enzymatic hydrolysates of skipjack tuna, Katsuwonus pelamis, were purified by ultrafiltration and further identified through micro-ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (micro-UPLC-QTOF-MS). The potential umami peptides were identified using both conventional collision-induced dissociation (CID) and novel electron-activated dissociation (EAD) fragmentation techniques. Nine novel umami peptides with iUmami-SCM > 588 were screened. Sensory evaluation and electronic tongue analysis were performed to confirm the taste characteristics of the umami peptides, indicating that these umami peptides all exhibited varying degrees of umami taste. Molecular docking and molecular dynamics simulation were utilized to investigate the interaction with T1R1/T1R3 taste receptors. The docking results revealed that Asp234, Ser23, Glu231, and Ile237 appeared most frequently in all docking sites and formed stable complexes through hydrogen bonding and electrostatic interactions. Furthermore, molecular dynamics simulation allowed for a more comprehensive analysis of their interactions within a dynamic environment, providing a deeper understanding of the umami perception mechanism involving umami peptides and receptors.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos , Receptores Acoplados a Proteínas G , Atum , Animais , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/análise , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Paladar , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Hidrolisados de Proteína/química , Humanos , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
3.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066082

RESUMO

Providing safe, smooth, and efficient trajectories for autonomous vehicles has long been a question of great interest in the field of autopiloting. In dynamic and ever-changing urban environments, safe and efficient trajectory planning is fundamental to achieving autonomous driving. Nevertheless, the complexity of environments with multiple constraints poses challenges for trajectory planning. It is possible that behavior planners may not successfully obtain collision-free trajectories in complex urban environments. Herein, this paper introduces spatio-temporal joint optimization-based trajectory planning (SJOTP) with multi-constraints for complex urban environments. The behavior planner generates initial trajectory clusters based on the current state of the vehicle, and a topology-guided hybrid A* algorithm applied to an inflated map is utilized to address the risk of collisions between the initial trajectories and static obstacles. Taking into consideration obstacles, road surface adhesion coefficients, and vehicle dynamics constraints, multi-constraint multi-objective coordinated trajectory planning is conducted, using both differential-flatness vehicle models and point-mass vehicle models. Taking into consideration longitudinal and lateral coupling in trajectory optimization, a spatio-temporal joint optimization solver is used to obtain the optimal trajectory. The simulation verification was conducted on a multi-agent simulation platform. The results demonstrate that this methodology can obtain optimal trajectories safely and efficiently in complex urban environments.

4.
Bioresour Technol ; 407: 131142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043277

RESUMO

In this study, a sustainable and environmentally friendly method was developed for the enrichment and purification of phycocyanin from Spirulina platensis. This was achieved by utilizing a temperature-sensitive polymer, Pluronic F68, in an aqueous two-phase solvent system. The phase behavior of the temperature-sensitive polymer-based biphasic system was evaluated. The extraction conditions were optimized by both single-factor experiments and response surface methodology. Under the optimal conditions, the upper polymer-rich phase was recycled for sustainable phycocyanin extraction, resulting in a grade of 3.23 during the third extraction cycle. Pluronic F68 could be efficiently recovered and reused during the extraction process. The interaction mechanism between Pluronic F68 and phycocyanin was systematically studied using FT-IR and fluorescence analysis. This was further complemented by static and dynamic calculation of molecular motion through molecular docking and molecular dynamics simulation, indicating that hydrophobic segment of Pluronic F68 played a key role in the binding process with phycocyanin.


Assuntos
Química Verde , Ficocianina , Poloxâmero , Spirulina , Temperatura , Ficocianina/química , Ficocianina/isolamento & purificação , Spirulina/química , Poloxâmero/química , Química Verde/métodos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Polímeros/química , Simulação de Dinâmica Molecular
5.
Angew Chem Int Ed Engl ; 63(36): e202409689, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38872358

RESUMO

Inverted NiOx-based perovskite solar cells (PSCs) exhibit considerable potential because of their low-temperature processing and outstanding excellent stability, while is challenged by the carriers transfer at buried interface owing to the inherent low carrier mobility and abundant surface defects that directly deteriorates the overall device fill factor. Present work demonstrates a chemical linker with the capability of simultaneously grasping NiOx and perovskite crystals by forming a Ni-S-Pb bridge at buried interface to significantly boost the carriers transfer, based on a rationally selected molecule of 1,3-dimethyl-benzoimidazol-2-thione (NCS). The constructed buried interface not only reduces the pinholes and needle-like residual PbI2 at the buried interface, but also deepens the work function and valence band maximum positions of NiOx, resulting in a smaller VBM offset between NiOx and perovskite film. Consequently, the modulated PSCs achieved a high fill factor up to 86.24 %, which is as far as we know the highest value in records of NiOx-based inverted PSCs. The NCS custom-tailored PSCs and minimodules (active area of 18 cm2) exhibited a champion efficiency of 25.05 % and 21.16 %, respectively. The unencapsulated devices remains over 90 % of their initial efficiency at maximum power point under continuous illumination for 1700 hours.

6.
Pathol Res Pract ; 255: 155220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432050

RESUMO

BACKGROUND: This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS: Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS: IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION: The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.


Assuntos
Adenina , Consolidação da Fratura , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Animais , Camundongos , Adenina/análogos & derivados , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
7.
Food Chem ; 429: 136986, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516053

RESUMO

The illegal adulteration of non-dairy cream in milk fat cream during the manufacturing process of baked goods has significantly hindered the robust growth of the dairy industry. In this study, a method based on rapid evaporative ionization mass spectrometry (REIMS) lipidomics pattern recognition integrated with machine learning algorithms was established. A total of 26 ions with importance were picked using multivariate statistical analysis as salient contributing features to distinguish between milk fat cream and non-dairy cream. Furthermore, employing discriminant analysis, decision trees, support vector machines, and neural network classifiers, machine learning models were utilized to classify non-dairy cream, milk fat cream, and minute quantities of non-dairy cream adulterated in milk fat cream. These approaches were enhanced through hyperparameter optimization and feature engineering, yielding accuracy rates at 98.4-99.6%. This artificial intelligent method of machine learning-guided REIMS pattern recognition can accurately identify adulteration of whipped cream and might help combat food fraud.


Assuntos
Aprendizado de Máquina , Leite , Animais , Leite/química , Espectrometria de Massas , Algoritmos , Análise Discriminante
8.
Pol J Microbiol ; 72(1): 61-67, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36929890

RESUMO

The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla PSE were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.


Assuntos
Aeromonas , Genes Bacterianos , Humanos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Aeromonas/genética , Antibacterianos/farmacologia
9.
Foods ; 12(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673497

RESUMO

Salted white herring (Ilisha elongata) is a popular fish product in the coastal region of China. The complex endogenous enzymes and microbial action determine the quality of a traditionally salted herring. In order to investigate the role of microorganisms in the quality formation of salted herring, three groups for different salting processes were established: traditional salted (TS), non-starter salted (NS), and starter culture salted (SS). The predominant microorganism in each processing group was Staphylococcus spp., as inferred by next-generation sequencing data. Different physicochemical parameters were obtained in each of the three processing groups (TCA-soluble peptide (trichloroacetic acid-soluble peptide), TVB-N (Total volatile basic nitrogen), and TBA values (thiobarbituric acid-reactive substance)). The TS group had the maximum level of total biogenic amines, while the SS group had the lowest. A strong positive correlation was found between Staphylococcus and 14 aromatic compounds, of which 5 were odor-active compounds that created fishy, grassy, fatty, and fruity flavors. Shewanella may produce trimethylamine, which is responsible for the salted herrings' fishy, salty, and deteriorating flavor. The findings demonstrated that autochthonous strains of Staphylococcus saprophyticus M90−61 were useful in improving product quality because they adapted quickly to the high osmotic environment.

10.
Carbohydr Res ; 522: 108685, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209515

RESUMO

To compare the structural properties and biological activities of chondroitin sulfate (CS) in two different tissues of Chinese sturgeon (Acipenser sinensis) and Russian sturgeon (Acipenser gueldenstaedti), we extracted their backbone cartilage CS (Cart-CS) and notochord CS (Noto-CS), and analyzed the CS structural properties using chromatographic and spectroscopic methods. The molecular weights of Chinese sturgeon Cart-CS and Noto-CS were 54.7 and 25.4 kDa, respectively, and the molecular weights of Russian sturgeon were 50.0 and 38.4 kDa, respectively. The disaccharide composition results showed that Cart-CS was mainly composed of CS-C, while Noto-CS was almost composed of pure CS-A. The antioxidant activity of sturgeon CS and its effect on collagen fibril formation were discussed. Sturgeon CS exhibited higher antioxidant activity than shark and bovine CSs. Sturgeon CS inhibited the self-assemble of type I collagen into fibrils. The inhibition effect of Cart-CS was higher than that of Noto-CS. The high value-added utilization of Cart-CS and Noto-CS will increase the value of sturgeon by-products. Furthermore, the disaccharide composition of CS in sturgeon depends on tissues of origin, but not on species. It means that the CS of Chinese sturgeon can be substituted by the CS of other commercial sturgeon. That will contribute to the protection of endangered species of Chinese sturgeon from illegal fishing and increase the value of commercial sturgeon by-products.


Assuntos
Sulfatos de Condroitina , Notocorda , Animais , Bovinos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Antioxidantes/farmacologia , Dissacarídeos , China , Peixes
11.
Nutrients ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235856

RESUMO

N-3 polyunsaturated fatty acids (n-3PUFA) are regarded as viable alternatives to aid the treatment of ulcerative colitis (UC). Most research focuses on eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA); little information is available about the effect of docosapentaenoic acid (DPA) on the gut microbiota and their metabolism in UC mice. In this study, the changes in gut microbiota and their metabolism in UC mice were studied through the 16S rRNA sequencing method and untargeted metabolomics. Moreover, the differential bacterial genus and differential metabolites in responding to DPA supplementation were screened through permutation test after orthogonal partial least squares discriminant analysis (OPLS-DA). The results indicated that DPA supplementation increased the diversity and altered the composition of the gut microbiota in UC mice; Akkermansia, Alistipes, Butyricicoccus, and Lactobacillus were selected as the differential bacterial genus. Supplementation of DPA also altered the fecal metabolite profile in the UC mice. Moreover, butyrate, N-carbamylglutamate (NCG), and histamine were screened as the differential metabolites. In conclusion, the regulation effect of DPA on the gut microbiota and their metabolism might be involved in the intervention mechanism of DPA in UC. More research needs to be carried out to elucidate the mechanism systematically.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Bactérias/genética , Bactérias/metabolismo , Butiratos , Colite Ulcerativa/metabolismo , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Histamina , Camundongos , RNA Ribossômico 16S/genética
12.
Mar Drugs ; 20(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135739

RESUMO

This study aimed to isolate and characterize pepsin-solubilized collagen (PSC) from marine and freshwater fish swim bladders. The physicochemical properties, protein pattern, amino acid composition, structure, thermal denaturation temperature, and antioxidant activity of PSC from four different swim bladder sources were investigated and compared. The results demonstrated that the four types of collagen extracted were all type I collagen. The yield of PSC extracted from grass carp (GCSB-PSC), bighead carp (BCSB-PSC), grouper (GSB-PSC), and monkfish swim bladders (MSB-PSC) were 38.98, 27.97, 18.16, and 10.35%, respectively. Compared to the other three PSCs, BCSB-PSC has the highest thermal denaturation temperature (38.60 °C). Based on FTIR spectroscopy and circular dichroism (CD) analysis, the extracted PSCs retained the triple helix and secondary structure well. Antioxidant studies showed that in the swim bladders of four species the swim bladder PSC could scavenge DPPH and ABTS radicals. Overall, swim bladders from marine and freshwater fish can be utilized as raw materials for collagen extraction, and the extracted collagen has potential commercial applications.


Assuntos
Antioxidantes , Pepsina A , Aminoácidos/análise , Animais , Antioxidantes/química , Colágeno/química , Colágeno Tipo I/química , Proteínas de Peixes/química , Pepsina A/química , Pele/metabolismo , Solubilidade , Bexiga Urinária/metabolismo
13.
Foods ; 11(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010395

RESUMO

The aim of this work is to evaluate the effects of different washing times (zero (W0), one (W1), two (W2), and three (W3) times) on the physicochemical characteristics, gel property, and protein oxidation of silver carp surimi during 4 °C refrigeration. The results showed that the yield, types of fatty acids, redness (a*), total volatile basic nitrogen, and thiobarbituric acid reactive substances of the surimi tended to decrease, and the whiteness, pH, gel strength, and water retention tended to increase with the increase of washing times. Meanwhile, washing removed some fatty acids and the fatty acid species showed a decreasing trend. The FTIR spectra showed that washing did not change the functional group composition but changed the content of each group of the functional groups, while decreasing the proportion of ß-sheet structures. Compared with the unwashed surimi, washing caused some of the immobilized water in the minced fish to be transferred to free water, and the water fluidity was enhanced. The washing enhanced the water holding capacity in the surimi gels, and the microstructure of the surimi gels was denser and delayed the protein oxidation during refrigeration. However, the difference between W2 and W3 surimi was not significant (p > 0.05). In practice, W2 can be used to produce surimi to improve its yield and reduce water consumption.

14.
Foods ; 11(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35885365

RESUMO

The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 µg/g tocopherol and 23.23 µg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.

15.
Foods ; 11(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35804705

RESUMO

In this study, Lepidotrigla microptera were hydrolyzed with four different proteolytic enzymes (Papain, neutrase, flavourzyme, and alcalase), and their distribution of molecular weights and ACE-inhibitory activity were tested. The alcalase hydrolysates showed the maximum ACE-inhibitory activity. A novel ACE-inhibitory peptide was isolated and purified from Lepidotrigla microptera protein hydrolysate (LMPH) using ultrafiltration, gel filtration chromatography, and preparative high performance liquid chromatography (prep-HPLC). The amino acid sequence of the purified peptide was identified as Phe-Leu-Thr-Ala-Gly-Leu-Leu-Asp (DLTAGLLE), and the IC50 value was 0.13 mg/mL. The ACE-inhibitory activity of DLTAGLLE was stable across a range of temperatures (<100 °C) and pH values (3.0−11.0) and retained after gastrointestinal digestion. DLTAGLLE was further identified as a noncompetitive inhibitor by Lineweaver−Burk plot. The molecular docking simulation showed that DLTAGLLE showed a high binding affinity with ACE sites by seven short hydrogen bonds. As the first reported antihypertensive peptide extracted from alcalase hydrolysate of Lepidotrigla microptera, DLTAGLLE has the potential to develop functional food or novel ACE-inhibitor drugs.

16.
Environ Sci Pollut Res Int ; 29(57): 86580-86594, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678971

RESUMO

It is still difficult to conduct numerical calculation of the aerodynamic noise of full-scale, long-marshalling, high-speed trains. Based on the Lighthill acoustic analogy theory, the aerodynamic sound source of the high-speed train is equivalent to countless micro-vibrating sound sources. An acoustic radiation model of the dipole sound source of high-speed trains is established, and a method to predict the aerodynamic noise in the far field of long-marshalling high-speed trains is proposed. By this method, combined with numerical simulation technology, the flow field, noise source, and far-field noise characteristics of high-speed trains with different marshalling numbers are studied. The improved delayed detached eddy simulation method is used for flow field calculation, to obtain aerodynamic noise source information regarding the surface of high-speed trains. The numerical calculation method is verified by wind tunnel testing. The results show that the flow field and noise source characteristics of high-speed trains with different marshalling numbers are similar. The greater the length of the train body, the longer the trailing distance of the train wake, and the stronger of a surface noise source the tail car becomes. The spatial distribution characteristics of aerodynamic noise in the far field of high-speed trains do not change significantly with the length of the train body, but the magnitude of the sound pressure level will increase with the increase in length of the train body. The middle car body parts of high-speed trains with different marshalling numbers have similar noise distributions and sound pressure levels. Based on the noise calculation results of the 3-marshalling high-speed train, the far-field noise of the 5-marshalling and 8-marshalling train models is predicted and found to be in good agreement with the far-field noise of the actual train model. The differences in average sound pressure level are 1.01 dBA and 1.74 dBA, respectively.

17.
Mar Drugs ; 20(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447930

RESUMO

A method for batch preparation of fucoxanthin from brown algae was established, which possessed the advantages of high yield and high purity. The ultrasonic-assisted extraction method was used to obtain a crude extract from Sargassum fusiforme as the separation sample. Then the crude extract was separated by elution-extrusion countercurrent chromatography. The optimum preparation conditions of fucoxanthin were determined as follows: n-hexane-ethanol-water (20:9:11, v:v:v) as a two-phase solvent system, the mobile phase flow rate was 5 mL min-1, the revolution speed was 800 r min-1, the loading capacity was 60 mg 10 mL-1 and the temperature was 25 °C. By this method, 12.8 mg fucoxanthin with a purity of 94.72% was obtained from the crude extract of Sargassum fusiforme. In addition, when the loading capacity was 50 mg 10 mL-1, the purity of fucoxanthin reached 96.01%. Two types of by-products, chlorophyll and pheophytin, could also be obtained during the process of separation. This optimal method was further applied to separate fucoxanthin from Laminaria japonica and Undaria pinnatifida, and 6.0 mg and 9.7 mg fucoxanthin with a purity of 96.24% and 92.62% were acquired, respectively. Therefore, it was demonstrated that the preparation method of fucoxanthin established in this study had an applicability to brown algae, which improved the utilization value of raw materials.


Assuntos
Phaeophyceae , Sargassum , Cromatografia Líquida de Alta Pressão , Misturas Complexas , Distribuição Contracorrente/métodos , Phaeophyceae/química , Sargassum/química , Xantofilas/química
18.
Food Chem ; 383: 132568, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35255363

RESUMO

In the present study, a novel method based on peptidomics and bioinformatic was applied to identification and characterization of antifreeze peptides (AFPs) from shrimp byproducts autolysate (SBPA). According to the results of in silico prediction and high peptide structural inflexibility, DEYEESGPGIVH and EQICINFCNEK were picked as potential AFP-1 and AFP-2, respectively. The outcomes of DSC determination indicated that TH of synthesized AFP-1 and AFP-2 (10 mg/mL) were 1.37 °C and 1.57 °C, respectively. Besides, 0.1 %-3 % AFPs showed significant cryoprotection in shrimp muscle after 3 and 6 freeze-thaw cycles, evidenced by higher SSP content, Ca2+-ATPase activity, sulfhydryl content and lower surface hydrophobicity than control; while the higher concentration resulted in better protection against freeze induced denaturation. Both AFP-1&2 showed favorable hydrogen bonding affinity which facilitated ice binding and ice crystal growth inhibition. This work could provide new ideals for identification and characterization of AFPs.


Assuntos
Biologia Computacional , Gelo , Proteínas Anticongelantes/química , Cristalização , alfa-Fetoproteínas
19.
Foods ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34829078

RESUMO

Making Antarctic krill oil into emulsion is a good way to utilize Antarctic krill, but proliferation of microorganisms cannot be ignored. H2O2 is widely used in the sterilization of liquid food since its decomposition products are environmentally friendly, although residual H2O2 should be removed for food safety. Adding catalase (CAT) is an effective means to do this. However, the enzyme activity center of CAT is the iron porphyrin group, which has the risk of accelerating lipid oxidation in the oil emulsion. Therefore, we hypothesized that CAT might not be suitable for the removal of H2O2 in Antarctic krill oil emulsion. In this paper, Antarctic krill oil emulsion was prepared, and then the effect of CAT on the emulsion was studied through visual observation, microscopic morphology observation, turbidity and stability, particle size, and ζ-potential; finally, the mechanism of CAT destroying the emulsion was explored from the perspective of lipid oxidation. The results showed that a stable Antarctic krill emulsion was prepared using Tween-80 as the emulsifier, with the oil concentration of 1% (v/v) and the ratio of surfactant to oil phase of 1:5 (v/v). The emulsion treated with CAT had undergone demulsification, stratification, and coagulation after 2 days of incubation, while the emulsion treated with superoxide dismutase (SOD) and bovine serum albumin (BSA) changed little. In addition, the thiobarbituric acid reactive substances (TBARS) value and the content of hydroxyl radicals in the CAT group increased significantly. The preliminary research results indicated that the effect of CAT on the emulsion related to the lipid oxidation caused by the iron porphyrin group at the center of the enzyme activity. All these results indicated that CAT was not suitable for the removal of residual H2O2 in Antarctic krill oil emulsion. Moreover, it is helpful to avoid the contact of Antarctic krill oil emulsion and CAT during the processing of the krill.

20.
Foods ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34441718

RESUMO

The development of an efficient pretreatment, prior to enzymatic hydrolysis, is a good strategy for the sustainable use of refractory fish byproducts. This study compared hydrothermal pretreatments at 159 °C for 2 min, followed by water extraction (steam explosion-assisted extraction, SE) and 121 °C for 70 min (hot-pressure extraction, HPE), for the recovery of proteins from fish backbones. The effect of enzymatic hydrolysis on the properties of the obtained fish bone protein (FBP) was also evaluated. The results demonstrated that FBP had high contents of protein (81.09-84.88 g/100 g) and hydroxyproline (70-82 residues/1000 residues). After hydrolysis with Flavourzyme, for 3 h, the FBP hydrolysates that were pretreated with SE (SFBP-H) exhibited a better degree of hydrolysis (DH) and nitrogen recovery (NR), and a higher level of umami taste free amino acids (151.50 mg/100 mL), compared with the HPE-treated samples. The obtained SFBP-H mainly distributed below 3000 Da and had strong scavenging effects on 1,1-diphenyl-2-picrylhydrazy (DPPH) (IC50 = 4.24 mg/mL) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (IC50 = 1.93 mg/mL) radicals. Steam explosion-assisted extraction is a promising route for recovering proteins from native fish bone materials, and improving the flavor and antioxidant activity of the hydrolysates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA