Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38183633

RESUMO

The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.

2.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376255

RESUMO

Smart dental materials are designed to intelligently respond to physiological changes and local environmental stimuli to protect the teeth and promote oral health. Dental plaque, or biofilms, can substantially reduce the local pH, causing demineralization that can then progress to tooth caries. Progress has been made recently in developing smart dental materials that possess antibacterial and remineralizing capabilities in response to local oral pH in order to suppress caries, promote mineralization, and protect tooth structures. This article reviews cutting-edge research on smart dental materials, their novel microstructural and chemical designs, physical and biological properties, antibiofilm and remineralizing capabilities, and mechanisms of being smart to respond to pH. In addition, this article discusses exciting and new developments, methods to further improve the smart materials, and potential clinical applications.

3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555544

RESUMO

Bone tissue engineering is a promising approach that uses seed-cell-scaffold drug delivery systems to reconstruct bone defects caused by trauma, tumors, or other diseases (e.g., periodontitis). Metformin, a widely used medication for type II diabetes, has the ability to enhance osteogenesis and angiogenesis by promoting cell migration and differentiation. Metformin promotes osteogenic differentiation, mineralization, and bone defect regeneration via activation of the AMP-activated kinase (AMPK) signaling pathway. Bone tissue engineering depends highly on vascular networks for adequate oxygen and nutrition supply. Metformin also enhances vascular differentiation via the AMPK/mechanistic target of the rapamycin kinase (mTOR)/NLR family pyrin domain containing the 3 (NLRP3) inflammasome signaling axis. This is the first review article on the effects of metformin on stem cells and bone tissue engineering. In this paper, we review the cutting-edge research on the effects of metformin on bone tissue engineering. This includes metformin delivery via tissue engineering scaffolds, metformin-induced enhancement of various types of stem cells, and metformin-induced promotion of osteogenesis, angiogenesis, and its regulatory pathways. In addition, the dental, craniofacial, and orthopedic applications of metformin in bone repair and regeneration are also discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Metformina/farmacologia , Metformina/uso terapêutico , Osteogênese , Proteínas Quinases Ativadas por AMP , Alicerces Teciduais , Diferenciação Celular , Regeneração Óssea
4.
J Mech Behav Biomed Mater ; 126: 104990, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871957

RESUMO

OBJECTIVES: The objective of this study was to develop a novel nanostructured resin infiltrant containing nanoparticles of amorphous calcium phosphate (NACP) to treat enamel white spot lesions (WSLs). Physical properties and the therapeutic effect of the new resin infiltrant were investigated for the first time. METHODS: NACP was incorporated into ICON (Icon caries infiltrant, DMG, Germany) with different mass fractions. Cytotoxicity, degree of conversion, surface hardness, calcium (Ca) and phosphorus (P) ions release concentrations were tested. After application to the demineralized enamel samples, the color changes were determined. Surface and cross-sectional hardness were measured, scanning electron microscopy (SEM) images were taken on the cross-section of samples to observe microstructure changes after 14-day pH cycling. RESULTS: Incorporating 10%-30% of NACP did not compromise the biocompatibility and physical properties of the resin infiltrant. ICON + 30% NACP group had long-lasting and high level of Ca and P ion release. After 14-day pH cycling, enamel surface hardness of ICON + 30% NACP group was 1.83 ± 0.21 GPa, significantly higher than the control group (1.32 ± 0.18 GPa) (p < 0.05). ICON + 30NACP group had the highest cross-sectional enamel hardness among all groups (p < 0.05), especially at 50 µm and 100 µm depth. SEM images showed that apparent enamel prism and inter-prism gaps in negative control were masked by mineral deposition in ICON + 30% NACP group. SIGNIFICANCE: The novel ICON+30% NACP infiltrant is promising to inhibit enamel WSLs, protect the enamel and increase its hardness.


Assuntos
Cárie Dentária , Nanopartículas , Fosfatos de Cálcio , Estudos Transversais , Dureza , Humanos
5.
Biomed Res Int ; 2019: 1271523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317022

RESUMO

Fixed orthodontic treatments often lead to enamel demineralization and cause white spot lesions (WSLs). The aim of this study was to evaluate the mineralization degree of 2 types of WSLs based on ICDAS index and compare the remineralizing efficacy of 3 oral hygiene practices after 1 month and 3 months. 80 mild demineralized and 80 severe demineralized enamel specimens were randomized into three treatments: fluoride toothpaste (FT), fluoride varnish plus fluoride toothpaste (FV+FT), and CPP-ACP plus fluoride toothpaste (CPP-ACP+FT). Microhardness tester, DIAGNODent Pen 2190, and scanning electron microscope were used to evaluate the changes of mineralization degree. Both qualitative and quantitative indicators suggested that the mild and severe white spot lesions were different in the degree of mineralization. Severe WSLs demineralized much more seriously than mild lesions even after 3 months of treatment. Despite the variation in severity, both lesions had the same variation trend after each measure was applied: FT had weak therapeutic effect, FV + FT and CPP-ACP + FT were effective for remineralization. Their remineralizing efficacy was similar after 1 month, and combined use of CPP-ACP plus F toothpaste was more effective after 3 months. In order to fight WSLs, early diagnosis was of great importance, and examination of the tooth surface after air-dry for 5 seconds was recommended. Also, when WSLs were found, added remineralizing treatments were required.


Assuntos
Dente Pré-Molar/efeitos dos fármacos , Cárie Dentária/prevenção & controle , Fluoretos/uso terapêutico , Dente Pré-Molar/patologia , Fosfatos de Cálcio/uso terapêutico , Cárie Dentária/patologia , Fluoretos Tópicos/uso terapêutico , Microscopia Eletrônica de Varredura , Higiene Bucal/métodos , Remineralização Dentária , Cremes Dentais/uso terapêutico
6.
Nanomaterials (Basel) ; 8(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29865184

RESUMO

Dental caries is prevalent worldwide. Tooth cavity restorations cost more than $46 billion annually in the United States alone. The current generation of esthetic polymeric restorations have unsatisfactory failure rates. Replacing the failed restorations accounts for 50⁻70% of all the restorations. This article reviewed developments in producing a new generation of bioactive and therapeutic restorations. This includes: Protein-repellent and anti-caries polymeric dental composites, especially the use of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminododecyl methacrylate (DMAHDM); protein-repellent adhesives to greatly reduce biofilm acids; bioactive cements to inhibit tooth lesions; combining protein-repellency with antibacterial nanoparticles of silver; tooth surface coatings containing calcium phosphate nanoparticles for remineralization; therapeutic restorations to suppress periodontal pathogens; and long-term durability of bioactive and therapeutic dental polymers. MPC was chosen due to its strong ability to repel proteins. DMAHDM was selected because it had the most potent antibacterial activity when compared to a series of antibacterial monomers. The new generation of materials possessed potent antibacterial functions against cariogenic and periodontal pathogens, and reduced biofilm colony-forming units by up to 4 logs, provided calcium phosphate ions for remineralization and strengthening of tooth structures, and raised biofilm pH from a cariogenic pH 4.5 to a safe pH 6.5. The new materials achieved a long-term durability that was significantly beyond current commercial control materials. This new generation of bioactive and nanostructured polymers is promising for wide applications to provide therapeutic healing effects and greater longevity for dental restorations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA