Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Ecol ; : e17327, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511765

RESUMO

The neurogenomic mechanisms mediating male-male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non-territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision-making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free-living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex-steroid and neuropeptide signalling appeared to be important in mediating status-specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN-wide gene expression differences between territorial and floater males that could form the basis of 'status-specific' neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems-level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.

2.
Proc Biol Sci ; 291(2014): 20232155, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196357

RESUMO

The detection of optic flow is important for generating optomotor responses to mediate retinal image stabilization, and it can also be used during ongoing locomotion for centring and velocity control. Previous work in hummingbirds has separately examined the roles of optic flow during hovering and when centring through a narrow passage during forward flight. To develop a hypothesis for the visual control of forward flight velocity, we examined the behaviour of hummingbirds in a flight tunnel where optic flow could be systematically manipulated. In all treatments, the animals exhibited periods of forward flight interspersed with bouts of spontaneous hovering. Hummingbirds flew fastest when they had a reliable signal of optic flow. All optic flow manipulations caused slower flight, suggesting that hummingbirds had an expected optic flow magnitude that was disrupted. In addition, upward and downward optic flow drove optomotor responses for maintaining altitude during forward flight. When hummingbirds made voluntary transitions to hovering, optomotor responses were observed to all directions. Collectively, these results are consistent with hummingbirds controlling flight speed via mechanisms that use an internal forward model to predict expected optic flow whereas flight altitude and hovering position are controlled more directly by sensory feedback from the environment.


Assuntos
Altitude , Aves , Animais , Retroalimentação Sensorial , Locomoção
3.
Ecol Evol ; 13(4): e9974, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038520

RESUMO

Bird-building collisions are a major source of wild bird mortality, with hundreds of millions of fatalities each year in the United States and Canada alone. Here, we use two decades of daily citizen science monitoring to characterize day-to-day variation in building collisions and determine the factors that predict the highest risk times in two North American cities. We use these analyses to evaluate three potential causes of increased collision risk: heightened migration traffic during benign weather, increased navigational and flight errors during inclement weather, and increased errors in response to highly directional sunlight that enhances reflected images. The seasonal phenology of collisions was consistent across sites and years, with daily collision rates approximately twofold higher in autumn as compared to spring. During both migration seasons, collision risk was best predicted by the weather conditions at dawn. In spring, peak collision risk occurs on days with warm temperatures, south winds, and a lack of precipitation at dawn. In autumn, peak collision occurs on days with cool temperatures, north winds, high atmospheric pressure, a lack of precipitation, and clear conditions with high visibility. Based on these results, we hypothesize that collisions are influenced by two main weather-driven mechanisms. First, benign weather at dawn and winds that are favorable for migration cause an increase in migration traffic in both spring and autumn, creating greater opportunity for collisions to occur. Second, for autumnal migrants, cold clear conditions may cause an additional increase in collision risk. We propose that these conditions may be particularly hazardous in autumn because of the high abundance of naïve and diurnal migrants at that time of year. Our analysis also establishes that a relatively small proportion of days (15%) are responsible for 50% of the total collision mortality within a season, highlighting the importance of targeting mitigation strategies to the most hazardous times.

4.
Sci Total Environ ; 881: 163413, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059132

RESUMO

Agriculture is one the main drivers of bird decline in both Europe and North America. While it is clear that agricultural practices and changes in the rural landscape directly and indirectly affect bird communities, we still do not know the extent to which these impacts might change across broad spatial and temporal scales. To address this question, we combined information on agricultural activities with occurrence and abundance of 358 bird species across five time periods spanning 20 years in Canada. As a proxy for agricultural impact, we used a combined index that included different agricultural metrics, such as cropland and tillage area and area treated with pesticides. We found that agriculture impact was negatively associated with bird diversity and evenness across all 20 years studied, but these associations seemed to vary by region. We found good support for an overall negative association between agriculture impact and bird diversity and evenness in the Eastern and Atlantic regions but weaker associations in the Prairies and Pacific. These findings suggest that agricultural activities result in bird communities that are less diverse and disproportionately benefit certain species. The spatial variation in the impact of agriculture on bird diversity and evenness we observed is likely a result of regional differences in the native vegetation, the type of crops and commodities produced, the historical context of agriculture, as well as the native bird community and the extent of their association with open habitat. Thus, our work provides support for the idea that the on-going agricultural impact on bird communities, while largely negative, is not uniform, and can vary across broad geographic regions.


Assuntos
Biodiversidade , Ecossistema , Animais , Agricultura , Canadá , Aves
5.
Proc Biol Sci ; 290(1994): 20221894, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855867

RESUMO

Sociality can provide many benefits, including increased foraging success, reproductive opportunities and defence against predation. How does sociality influence the dominance hierarchies of ecological competitors? Here, we address this question using a large citizen science dataset of competitive interactions among birds foraging at backyard feeders, representing a network of over 55 000 interactions among 68 common species. We first show that species differ in average group size (the number of conspecifics observed together) as a fundamental measure of sociality. When analysing heterospecific competition, we find that sociality is inversely related to dominance. On average, a single individual from a solitary species is more likely to displace a size-matched opponent than a single individual from a social species. Yet, we find that social species gain an increase in their competitive advantage when in the presence of their conspecifics, which may occur as a result of dynamics within their groups. Finally, we show that more social species have relatively fewer dominance interactions with heterospecifics, and more with conspecifics. Overall, these results demonstrate that sociality can influence competition in ecological networks. More social species have decreased competitive ability as individuals, but they may gain competitive ability in groups.


Assuntos
Ciência do Cidadão , Comportamento Social , Humanos , Animais , Predomínio Social , Aves , Comportamento Predatório
6.
Horm Behav ; 151: 105340, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933440

RESUMO

Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.


Assuntos
Passeriformes , Biologia de Sistemas , Humanos , Animais , Sistema Endócrino , Passeriformes/fisiologia , Hormônios , Adaptação Fisiológica
7.
Proc Biol Sci ; 289(1975): 20212780, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35582791

RESUMO

Many leading journals in ecology and evolution now mandate open data upon publication. Yet, there is very little oversight to ensure the completeness and reusability of archived datasets, and we currently have a poor understanding of the factors associated with high-quality data sharing. We assessed 362 open datasets linked to first- or senior-authored papers published by 100 principal investigators (PIs) in the fields of ecology and evolution over a period of 7 years to identify predictors of data completeness and reusability (data archiving quality). Datasets scored low on these metrics: 56.4% were complete and 45.9% were reusable. Data reusability, but not completeness, was slightly higher for more recently archived datasets and PIs with less seniority. Journal open data policy, PI gender and PI corresponding author status were unrelated to data archiving quality. However, PI identity explained a large proportion of the variance in data completeness (27.8%) and reusability (22.0%), indicating consistent inter-individual differences in data sharing practices by PIs across time and contexts. Several PIs consistently shared data of either high or low archiving quality, but most PIs were inconsistent in how well they shared. One explanation for the high intra-individual variation we observed is that PIs often conduct research through students and postdoctoral researchers, who may be responsible for the data collection, curation and archiving. Levels of data literacy vary among trainees and PIs may not regularly perform quality control over archived files. Our findings suggest that research data management training and culture within a PI's group are likely to be more important determinants of data archiving quality than other factors such as a journal's open data policy. Greater incentives and training for individual researchers at all career stages could improve data sharing practices and enhance data transparency and reusability.


Assuntos
Ecologia , Disseminação de Informação , Confiabilidade dos Dados , Coleta de Dados , Humanos
8.
Sci Rep ; 11(1): 15166, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385477

RESUMO

Restraint asphyxia has been proposed as a mechanism for some arrest-related deaths that occur during or shortly after a suspect is taken into custody. Our analysis of the literature found that prone positioning, weight applied to the back, recovery after simulated pursuit, and restraint position have led to restrictive, but non life-threatening respiratory changes when tested in subsets. However, the combined effects of all four parameters have not been tested together in a single study. We hypothesized that a complete protocol with high-sensitivity instrumentation could improve our understanding of breathing physiology during weighted restraint. We designed an electrical impedance tomography (EIT)-based protocol for this purpose and measured the 3D distribution of ventilation within the thorax. Here, we present the results from a study on 17 human subjects that revealed FRC declines during weighted restrained recovery from exercise for subjects in the restraint postures, but not the control posture. These prolonged FRC declines were consistent with abdominal muscle recruitment to assist the inspiratory muscles, suggesting that subjects in restraint postures have increased work of breathing compared to controls. Upon removal of the weighted load, lung reserve volumes gradually increased for the hands-behind-the-head restraint posture but continued to decrease for subjects in the hands-behind-the-back restraint posture. We discuss the possible role this increased work of breathing may play in restraint asphyxia.


Assuntos
Asfixia/diagnóstico por imagem , Medidas de Volume Pulmonar , Polícia , Restrição Física/efeitos adversos , Adulto , Impedância Elétrica , Humanos , Pulmão/diagnóstico por imagem , Masculino , Tórax/diagnóstico por imagem , Tomografia , Adulto Jovem
9.
J Anim Ecol ; 90(1): 131-142, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745255

RESUMO

Social networks can vary in their organization and dynamics, with implications for ecological and evolutionary processes. Understanding the mechanisms that drive social network dynamics requires integrating individual-level biology with comparisons across multiple social networks. Testosterone is a key mediator of vertebrate social behaviour and can influence how individuals interact with social partners. Although the effects of testosterone on individual behaviour are well established, no study has examined whether hormone-mediated behaviour can scale up to shape the emergent properties of social networks. We investigated the relationship between testosterone and social network dynamics in the wire-tailed manakin, a lekking bird species in which male-male social interactions form complex social networks. We used an automated proximity system to longitudinally monitor several leks and we quantified the social network structure at each lek. Our analysis examines three emergent properties of the networks-social specialization (the extent to which a network is partitioned into exclusive partnerships), network stability (the overall persistence of partnerships through time) and behavioural assortment (the tendency for like to associate with like). All three properties are expected to promote the evolution of cooperation. As the predictor, we analysed the collective testosterone of males within each social network. Social networks that were composed of high-testosterone dominant males were less specialized, less stable and had more negative behavioural assortment, after accounting for other factors. These results support our main hypothesis that individual-level hormone physiology can predict group-level network dynamics. We also observed that larger leks with more interacting individuals had more positive behavioural assortment, suggesting that small groups may constrain the processes of homophily and behaviour-matching. Overall, these results provide evidence that hormone-mediated behaviour can shape the broader architecture of social groups. Groups with high average testosterone exhibit social network properties that are predicted to impede the evolution of cooperation.


Assuntos
Passeriformes , Testosterona , Animais , Masculino , Personalidade , Comportamento Social , Rede Social
10.
Proc Natl Acad Sci U S A ; 117(6): 2993-2999, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980520

RESUMO

The dynamics of social networks can determine the transmission of information, the spread of diseases, and the evolution of behavior. Despite this broad importance, a general framework for predicting social network stability has not been proposed. Here we present longitudinal data on the social dynamics of a cooperative bird species, the wire-tailed manakin, to evaluate the potential causes of temporal network stability. We find that when partners interact less frequently and when social connectedness increases, the network is subsequently less stable. Social connectivity was also negatively associated with the temporal persistence of coalition partnerships on an annual timescale. This negative association between connectivity and stability was surprising, especially given that individual manakins who were more connected also had more stable partnerships. This apparent paradox arises from a within-individual behavioral trade-off between partnership quantity and quality. Crucially, this trade-off is easily masked by behavioral variation among individuals. Using a simulation, we show that these results are explained by a simple model that combines among-individual behavioral heterogeneity and reciprocity within the network. As social networks become more connected, individuals face a trade-off between partnership quantity and maintenance. This model also demonstrates how among-individual behavioral heterogeneity, a ubiquitous feature of natural societies, can improve social stability. Together, these findings provide unifying principles that are expected to govern diverse social systems.

11.
Am Nat ; 195(1): 82-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868543

RESUMO

Stable cooperation requires plasticity whereby individuals are able to express competitive or cooperative behaviors depending on social context. To date, however, the physiological mechanisms that underlie behavioral variation in cooperative systems are poorly understood. We studied hormone-mediated behavior in the wire-tailed manakin (Pipra filicauda), a gregarious songbird whose cooperative partnerships and competition for status are both crucial for fitness. We used automated telemetry to monitor >36,000 cooperative interactions among male manakins over three field seasons, and we examined how circulating testosterone affects cooperation using >500 hormone samples. Observational data show that in nonterritorial floater males, high testosterone is associated with increased cooperative behaviors and subsequent ascension to territorial status. In territory-holding males, however, both observational and experimental evidence demonstrate that high testosterone antagonizes cooperation. Moreover, circulating testosterone explains significant variation (2%-8%) in social behavior within each status class. Collectively, our findings show that the hormonal control of cooperation depends on a male's social status. We propose that the status-dependent reorganization of hormone-regulatory pathways can facilitate stable cooperative partnerships and thus provide direct fitness benefits for males.


Assuntos
Comportamento Cooperativo , Passeriformes/fisiologia , Comportamento Social , Territorialidade , Testosterona/sangue , Animais , Masculino , Estações do Ano , Meio Social
12.
Physiol Biochem Zool ; 92(5): 481-495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393209

RESUMO

Hummingbirds are an emerging model for studies of the visual guidance of flight. However, basic properties of their visual systems, such as spatial and temporal visual resolution, have not been characterized. We measured both the spatial and temporal visual resolution of Anna's hummingbirds using behavioral experiments and anatomical estimates. Spatial visual resolution was determined behaviorally using the optocollic reflex and anatomically using peak retinal ganglion cell densities from retinal whole mounts and eye size. Anna's hummingbirds have a spatial visual resolution of 5-6 cycles per degree when measured behaviorally, which matches anatomical estimates (fovea: 6.26±0.12 cycles per degree; area temporalis: 5.59±0.15 cycles per degree; and whole eye average: 4.64±0.08 ). To determine temporal visual resolution, we used an operant conditioning paradigm wherein hummingbirds were trained to use a flickering light to find a food reward. The limits of temporal visual resolution were estimated as 70-80 Hz. To compare Anna's hummingbirds with other bird species, we used a phylogenetically controlled analysis of previously published data on avian visual resolutions and body size. Our measurements for Anna's hummingbird vision fall close to and below predictions based on body size for spatial visual resolution and temporal visual resolution, respectively. These results indicate that the enhanced flight performance and foraging behaviors of hummingbirds do not require enhanced spatial or temporal visual resolution. This finding is important for interpreting flight control studies and contributes to a growing understanding of avian vision.


Assuntos
Aves/fisiologia , Fenômenos Fisiológicos Oculares , Processamento Espacial , Animais , Aves/genética , Masculino , Especificidade da Espécie , Fatores de Tempo , Gravação em Vídeo
13.
PLoS One ; 14(4): e0210924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017903

RESUMO

Colorful feathers have long been assumed to be conspicuous to predators, and hence likely to incur costs due to enhanced predation risk. However, many mammals that prey on birds have dichromatic visual systems with only two types of color-sensitive visual receptors, rather than the three and four photoreceptors characteristic of humans and most birds, respectively. Here, we use a combination of multispectral imaging, reflectance spectroscopy, color vision modelling and visual texture analysis to compare the visual signals available to conspecifics and to mammalian predators from multicolored feathers from the Indian peacock (Pavo cristatus), as well as red and yellow parrot feathers. We also model the effects of distance-dependent blurring due to visual acuity. When viewed by birds against green vegetation, most of the feathers studied are estimated to have color and brightness contrasts similar to values previously found for ripe fruit. On the other hand, for dichromat mammalian predators, visual contrasts for these feathers were only weakly detectable and often below detection thresholds for typical viewing distances. We also show that for dichromat mammal vision models, the peacock's train has below-detection threshold color and brightness contrasts and visual textures that match various foliage backgrounds. These findings are consistent with many feathers of similar hue to those studied here being inconspicuous, and in some cases potentially cryptic, in the eyes of common mammalian predators of adult birds. Given that birds perform many conspicuous motions and behaviors, this study suggests that mammalian predators are more likely to use other sensory modalities (e.g., motion detection, hearing, and olfaction), rather than color vision, to detect avian prey. This suggests new directions for future behavioral studies and emphasizes the importance of understanding the influence of the sensory ecology of predators in the evolution of animal coloration.


Assuntos
Visão de Cores/fisiologia , Plumas/fisiologia , Furões/fisiologia , Pigmentação/fisiologia , Comportamento Predatório/fisiologia , Animais , Evolução Biológica , Mimetismo Biológico/fisiologia , Aves/fisiologia , Cor , Sinais (Psicologia) , Feminino , Masculino , Modelos Biológicos , Células Fotorreceptoras de Vertebrados/fisiologia , Fatores Sexuais , Percepção Visual/fisiologia
14.
PLoS One ; 13(11): e0207247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485316

RESUMO

Feathers act as vibrotactile sensors that can detect mechanical stimuli during avian flight and tactile navigation, suggesting that they may also detect stimuli during social displays. In this study, we present the first measurements of the biomechanical properties of the feather crests found on the heads of birds, with an emphasis on those from the Indian peafowl (Pavo cristatus). We show that in peafowl these crest feathers are coupled to filoplumes, small feathers known to function as mechanosensors. We also determined that airborne stimuli with the frequencies used during peafowl courtship and social displays couple efficiently via resonance to the vibrational response of their feather crests. Specifically, vibrational measurements showed that although different types of feathers have a wide range of fundamental resonant frequencies, peafowl crests are driven near-optimally by the shaking frequencies used by peacocks performing train-rattling displays. Peafowl crests were also driven to vibrate near resonance in a playback experiment that mimicked the effect of these mechanical sounds in the acoustic very near-field, reproducing the way peafowl displays are experienced at distances ≤ 1.5m in vivo. When peacock wing-shaking courtship behaviour was simulated in the laboratory, the resulting airflow excited measurable vibrations of crest feathers. These results demonstrate that peafowl crests have mechanical properties that allow them to respond to airborne stimuli at the frequencies typical of this species' social displays. This suggests a new hypothesis that mechanosensory stimuli could complement acoustic and visual perception and/or proprioception of social displays in peafowl and other bird species. We suggest behavioral studies to explore these ideas and their functional implications.


Assuntos
Plumas/fisiologia , Galliformes/fisiologia , Estimulação Acústica , Acústica , Animais , Comportamento Animal , Fenômenos Biomecânicos , Corte/psicologia , Plumas/anatomia & histologia , Feminino , Galliformes/anatomia & histologia , Masculino , Mecanorreceptores/fisiologia , Comportamento Social , Som , Vibração , Gravação em Vídeo
15.
Science ; 359(6376): 653-657, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439237

RESUMO

How does agility evolve? This question is challenging because natural movement has many degrees of freedom and can be influenced by multiple traits. We used computer vision to record thousands of translations, rotations, and turns from more than 200 hummingbirds from 25 species, revealing that distinct performance metrics are correlated and that species diverge in their maneuvering style. Our analysis demonstrates that the enhanced maneuverability of larger species is explained by their proportionately greater muscle capacity and lower wing loading. Fast acceleration maneuvers evolve by recruiting changes in muscle capacity, whereas fast rotations and sharp turns evolve by recruiting changes in wing morphology. Both species and individuals use turns that play to their strengths. These results demonstrate how both skill and biomechanical traits shape maneuvering behavior.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Aceleração , Animais , Evolução Biológica , Aves/classificação , Filogenia , Rotação , América do Sul
16.
Proc Biol Sci ; 285(1893): 20181973, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963888

RESUMO

Both reciprocity and positive assortment (like with like) are predicted to promote the evolution of cooperation, yet how partners influence each other's behaviour within dynamic networks is not well understood. One way to test this question is to partition phenotypic variation into differences among individuals in the expression of cooperative behaviour (the 'direct effect'), and plasticity within individuals in response to the social environment (the 'indirect effect'). A positive correlation between these two sources of variation, such that more cooperative individuals elicit others to cooperate, is predicted to facilitate social contagion and selection on cooperative behaviour. Testing this hypothesis is challenging, however, because it requires repeated measures of behaviour across a dynamic social landscape. Here, we use an automated data-logging system to quantify the behaviour of 179 wire-tailed manakins, birds that form cooperative male-male coalitions, and we use multiple-membership models to test the hypothesis that dynamic network partnerships shape within-individual variation in cooperative behaviour. Our results show strong positive correlations between a bird's own sociality and his estimated effect on his partners, consistent with the hypothesis that cooperation begets cooperation. These findings support the hypothesis that social contagion can facilitate selection for cooperative behaviour within social networks.


Assuntos
Comportamento Cooperativo , Passeriformes/fisiologia , Comportamento Social , Animais , Masculino
17.
Curr Biol ; 26(24): 3368-3374, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27939316

RESUMO

High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7].


Assuntos
Altitude , Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos
18.
Curr Biol ; 26(21): 2854-2861, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27720624

RESUMO

Nutrient deprivation can lead to dramatic changes in feeding behavior, including acceptance of foods that are normally rejected. In flies, this behavioral shift depends in part on reciprocal sensitization and desensitization of sweet and bitter taste, respectively. However, the mechanisms for bitter taste modulation remain unclear. Here, we identify a set of octopaminergic/tyraminergic neurons, named OA-VLs, that directly modulate bitter sensory neuron output in response to starvation. OA-VLs are in close proximity to bitter sensory neuron axon terminals and show reduced tonic firing following starvation. We find that octopamine and tyramine potentiate bitter sensory neuron responses, suggesting that starvation-induced reduction in OA-VL activity depotentiates bitter taste. Consistent with this model, artificial silencing of OA-VL activity induces a starvation-like reduction in bitter sensory neuron output. These results demonstrate that OA-VLs mediate a critical step in starvation-dependent bitter taste modulation, allowing flies to dynamically balance the risks associated with bitter food consumption against the threat of severe starvation.


Assuntos
Drosophila melanogaster/fisiologia , Privação de Alimentos , Depressão Sináptica de Longo Prazo , Percepção Gustatória , Animais , Feminino , Células Receptoras Sensoriais/fisiologia
19.
Proc Natl Acad Sci U S A ; 113(31): 8849-54, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432982

RESUMO

Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Fluxo Óptico/fisiologia , Campos Visuais/fisiologia , Algoritmos , Altitude , Animais , Meio Ambiente , Masculino , Modelos Biológicos , Movimento (Física) , Visão Ocular/fisiologia
20.
PLoS One ; 11(4): e0152759, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119380

RESUMO

Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.


Assuntos
Fenômenos Biomecânicos/fisiologia , Plumas/anatomia & histologia , Plumas/fisiologia , Galliformes/fisiologia , Animais , Atenção/fisiologia , Corte , Feminino , Destreza Motora/fisiologia , Som , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA