Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 11(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133405

RESUMO

Blood biomarkers, including neurofilament light chain (NfL), have garnered attention as potential indicators for chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting adverse effect of neurotoxic anticancer drugs. However, no blood biomarker has been established for routine application or translational research. This pilot study aimed to evaluate a limited panel of blood biomarkers in rat models of CIPN and their correlations with neuropathic pain. CIPN models were induced through repeated injections of oxaliplatin, paclitaxel, bortezomib, and vincristine. Electronic von Frey testing was used to assess tactile allodynia. Post anticancer injections, serum concentrations of 31 proteins were measured. Allodynia thresholds decreased in anticancer-treated animals compared to controls. No consistent modifications were observed in the biomarkers across CIPN models. The most noteworthy biomarkers with increased concentrations in at least two CIPN models were NfL (paclitaxel, vincristine), MCP-1, and RANTES (oxaliplatin, vincristine). Vincristine-treated animals exhibited strong correlations between LIX, MCP-1, NfL, and VEGF concentrations and tactile allodynia thresholds. No single biomarker can be recommended as a unique indicator of CIPN-related pain. Because of the study limitations (single dose of each anticancer drug, young animals, and single time measurement of biomarkers), further investigations are necessary to define the kinetics, specificities, and sensitivities of MCP-1, RANTES, and NfL.

2.
Biomed Pharmacother ; 167: 115535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738793

RESUMO

Identifying compounds that are neurotoxic either toward the central or the peripheral nervous systems (CNS or PNS) would greatly benefit early stages of drug development by derisking liabilities and selecting safe compounds. Unfortunately, so far assays mostly rely on histopathology findings often identified after repeated-dose toxicity studies in animals. The European NeuroDeRisk project aimed to provide comprehensive tools to identify compounds likely inducing neurotoxicity. As part of this project, the present work aimed to identify diagnostic non-invasive biomarkers of PNS toxicity in mice. We used two neurotoxic drugs in vivo to correlate functional, histopathological and biological findings. CD1 male mice received repeated injections of oxaliplatin or paclitaxel followed by an assessment of drug exposure in CNS/PNS tissues. Functional signs of PNS toxicity were assessed using electronic von Frey and cold paw immersion tests (oxaliplatin), and functional observational battery, rotarod and cold plate tests (paclitaxel). Plasma concentrations of neurofilament light chain (NF-L) and vascular endothelial growth factor A (VEGF-A) were measured, and histopathological evaluations were performed on a comprehensive list of CNS and PNS tissues. Functional PNS toxicity was observed only in oxaliplatin-treated mice. Histopathological findings were observed dose-dependently only in paclitaxel groups. While no changes of VEGF-A concentrations was recorded, NF-L concentrations were increased only in paclitaxel-treated animals as early as 7 days after the onset of drug administration. These results show that plasma NF-L changes correlated with microscopic changes in the PNS, thus strongly suggesting that NF-L could be a sensitive and specific biomarker of PNS toxicity in mice.

3.
Biomed Pharmacother ; 149: 112915, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35635358

RESUMO

BACKGROUND: Donepezil, a cholinesterase inhibitor approved in Alzheimer's disease, has demonstrated analgesic and preventive effects in animal models of oxaliplatin-induced neuropathy. To improve the clinical interest of donepezil for the management and prevention of chemotherapy-induced peripheral neuropathy (CIPN), a broader validation is required in different animal models of CIPN. METHODS: using rat models of CIPN (bortezomib, paclitaxel, and vincristine), the analgesic and preventive efficacies of donepezil were evaluated on tactile, cold and heat hypersensitivities. The involvement of muscarinic M2 acetylcholine receptors (m2AChRs) in analgesic effects was investigated at the spinal level. The absence of interference of donepezil with the cytotoxic effect of chemotherapy has been controlled in cancer cell lines. RESULTS: the analgesic efficacy of donepezil was demonstrated for all CIPN models, mainly on tactile hypersensitivity (maximal efficacy at 60 min, p < 0.05 vs. vehicle group). This effect was suppressed by an intrathecal injection of methoctramine (m2AChR antagonist). Regarding preventive effects, donepezil limited tactile hypersensitivity induced by paclitaxel, but not for other CIPN models. Donepezil did not modify the viability of cancer cells or the efficacy of anticancer drugs. CONCLUSIONS: donepezil had a broad analgesic effect on animal models of CIPN and this effect involved spinal m2AChRs. This work validates the repositioning of donepezil in the management of CIPN.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Doenças do Sistema Nervoso Periférico , Acetilcolina , Analgésicos/efeitos adversos , Animais , Antineoplásicos/toxicidade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila , Modelos Animais , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Ratos , Receptor Muscarínico M2 , Receptores Muscarínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA