RESUMO
How flexible developmental programs integrate information from internal and external factors to modulate stem cell behavior is a fundamental question in developmental biology. Cells of the Arabidopsis stomatal lineage modify the balance of stem cell proliferation and differentiation to adjust the size and cell type composition of mature leaves. Here, we report that meristemoids, one type of stomatal lineage stem cell, trigger the transition from asymmetric self-renewing divisions to commitment and terminal differentiation by crossing a critical cell size threshold. Through computational simulation, we demonstrate that this cell size-mediated transition allows robust, yet flexible termination of stem cell proliferation, and we observe adjustments in the number of divisions before the differentiation threshold under several genetic manipulations. We experimentally evaluate several mechanisms for cell size sensing, and our data suggest that this stomatal lineage transition is dependent on a nuclear factor that is sensitive to DNA content.
Assuntos
Arabidopsis , Arabidopsis/genética , Diferenciação Celular , Tamanho Celular , Simulação por Computador , Folhas de PlantaRESUMO
The abscisic acid (ABA) signaling pathway is the key defense mechanism against drought stress in plants. In the pathway, signal transduction among four core proteins, pyrabactin resistance (PYR), protein phosphatase 2C (PP2C), sucrose-non-fermenting-1-related protein kinase 2 (SnRK2), and ABRE binding factor (ABF) leads to altered gene expression kinetics that is driven by an ABA-responsive element (ABRE). A most recent and comprehensive study provided data suggesting that ABA alters the expression kinetics in over 6,500 genes through the ABF-ABRE associations in Arabidopsis. Of these genes, termed ABA gene regulatory network (GRN), over 50% contain a single ABRE within 4 kb of the gene body, despite previous findings suggesting that a single copy of ABRE is not sufficient to drive the gene expression. To understand the expression system of the ABA GRN by the single ABRE, a dynamic model of the gene expression for the desiccation 29A (RD29A) gene was constructed with ordinary differential equations. Parameter values of molecular-molecular interactions and enzymatic reactions in the model were implemented from the data obtained by previously conducted in vitro experiments. On the other hand, parameter values of gene expression and translation were determined by comparing the kinetics of gene expression in the model to the expression kinetics of RD29A in real plants. The optimized model recapitulated the trend of gene expression kinetics of RD29A in ABA dose-response that were previously investigated. Further analysis of the model suggested that a single ABRE controls the time scale and dynamic range of the ABA-dependent gene expression through the PP2C feedback regulation even though an additional cis-element is required to drive the expression. The model construed in this study underpins the importance of a single ABRE in the ABA GRN.
RESUMO
The use of scientific web applications (SWApps) across biological and environmental sciences has grown exponentially over the past decade or so. Although quantitative evidence for such increased use in practice is scant, collectively, we have observed that these tools become more commonplace in teaching, outreach, and in science coproduction (e.g., as decision support tools). Despite the increased popularity of SWApps, researchers often receive little or no training in creating such tools. Although rolling out SWApps can be a relatively simple and quick process using modern, popular platforms like R shiny apps or Tableau dashboards, making them useful, usable, and sustainable is not. These 10 simple rules for creating a SWApp provide a foundation upon which researchers with little to no experience in web application design and development can consider, plan, and carry out SWApp projects.
Assuntos
Biologia/organização & administração , Ciência Ambiental/organização & administração , Software , Biologia Computacional , Gráficos por Computador , Sistemas de Apoio a Decisões Clínicas , Humanos , Internet , Aplicativos Móveis , Linguagens de Programação , Publicações , Pesquisadores , Fluxo de TrabalhoRESUMO
The study of complex biological systems necessitates computational modeling approaches that are currently underutilized in plant biology. Many plant biologists have trouble identifying or adopting modeling methods to their research, particularly mechanistic mathematical modeling. Here we address challenges that limit the use of computational modeling methods, particularly mechanistic mathematical modeling. We divide computational modeling techniques into either pattern models (e.g., bioinformatics, machine learning, or morphology) or mechanistic mathematical models (e.g., biochemical reactions, biophysics, or population models), which both contribute to plant biology research at different scales to answer different research questions. We present arguments and recommendations for the increased adoption of modeling by plant biologists interested in incorporating more modeling into their research programs. As some researchers find math and quantitative methods to be an obstacle to modeling, we provide suggestions for easy-to-use tools for non-specialists and for collaboration with specialists. This may especially be the case for mechanistic mathematical modeling, and we spend some extra time discussing this. Through a more thorough appreciation and awareness of the power of different kinds of modeling in plant biology, we hope to facilitate interdisciplinary, transformative research.
RESUMO
Firefly luciferase has been widely used in biotechnology and biophotonics due to photon emission during enzymatic activity. In the past, the effect of amino acid substitutions (mutants) on the enzymatic activity of firefly luciferase has been characterized by the Michaelis constant, KM. The KM is obtained by plotting the maximum relative luminescence units (RLU) detected for several concentrations of the substrate (luciferin or luciferyl-adenylate). The maximum RLU is used because the assay begins to violate the quasi-steady state approximation when RLU decays as a function of time. However, mutations also affect the time to reach and decay from the maximum RLU. These effects are not captured when calculating the KM. To understand changes in the RLU kinetics of firefly luciferase mutants, we used a Michaelis-Menten model with the non-steady state approximation. In this model, we do not assume that the amount of enzyme-substrate complex is at equilibrium throughout the course of the experiment. We found that one of the two mutants analyzed in this study decreases not only the dissociation rate ( koff) but also the association rate ( kon) of luciferyl-adenylate, suggesting the narrowing of the structural pocket containing the catalytic amino acids. Furthermore, comparative analysis of the nearly complete oxidation of luciferyl-adenylate with wild-type and mutant firefly luciferase reveals that the total amount of photons emitted with the mutant is 50-fold larger than that with the wild type, on average. These two results together indicate that the slow supply of luciferyl-adenylate to the enzyme increases the total number of photons emitted from the substrate, luciferyl-adenylate. Analysis with the non-steady state approximation model is generally applicable when enzymatic production kinetics are monitored in real time.
Assuntos
Luciferases de Vaga-Lume/química , Animais , Vaga-Lumes/enzimologia , Luciferina de Vaga-Lumes/química , Cinética , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Mutação , OxirreduçãoRESUMO
Current estimates of the HIV epidemic indicate a decrease in the incidence of the disease in the undiagnosed subpopulation over the past 10 years. However, a lack of access to care has not been considered when modeling the population. Populations at high risk for contracting HIV are twice as likely to lack access to reliable medical care. In this paper, we consider three contributors to the HIV population dynamics: at-risk population exhaustion, lack of access to care, and usage of anti-retroviral therapy (ART) by diagnosed individuals. An extant problem in the mathematical study of this system is deriving parameter estimates due to a portion of the population being unobserved. We approach this problem by looking at the proportional change in the infected subpopulations. We obtain conservative estimates for the proportional change of the infected subpopulations using hierarchical Bayesian statistics. The estimated proportional change is used to derive epidemic parameter estimates for a system of stochastic differential equations (SDEs). Model fit is quantified to determine the best parametric explanation for the observed dynamics in the infected subpopulations. Parameter estimates derived using these methods produce simulations that closely follow the dynamics observed in the data, as well as values that are generally in agreement with prior understanding of transmission and diagnosis rates. Simulations suggest that the undiagnosed population may be larger than currently estimated without significantly affecting the population dynamics.
Assuntos
Infecções por HIV/epidemiologia , Modelos Biológicos , Fármacos Anti-HIV/uso terapêutico , Teorema de Bayes , Simulação por Computador , Epidemias , Infecções por HIV/diagnóstico , Infecções por HIV/terapia , Infecções por HIV/transmissão , Acessibilidade aos Serviços de Saúde , Humanos , Adesão à Medicação , Risco , Processos EstocásticosRESUMO
Endoreplication, a modified cell cycle in which DNA is replicated without subsequent cell division, plays an important but poorly understood role in plant growth and in plant responses to biotic and abiotic stress. The Arabidopsis (Arabidopsis thaliana) SIAMESE (SIM) gene encodes the first identified member of the SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors. SIM controls endoreplication during trichome development, and sim mutant trichomes divide several times instead of endoreplicating their DNA. The SMR family is defined by several short linear amino acid sequence motifs of largely unknown function, and family members have little sequence similarity to any known protein functional domains. Here, we investigated the roles of the conserved motifs in SIM site-directed Arabidopsis mutants using several functional assays. We identified a potential cyclin-dependent kinase (CDK)-binding site, which bears no resemblance to other known CDK interaction motifs. We also identified a potential site of phosphorylation and two redundant nuclear localization sequences. Surprisingly, the only motif with similarity to the other family of plant CDK inhibitors, the INHIBITOR/INTERACTOR OF CDC2 KINASE/KIP-RELATED PROTEIN proteins, is not required for SIM function in vivo. Because even highly divergent members of the SMR family are able to replace SIM function in Arabidopsis trichomes, it is likely that the results obtained here for SIM will apply to other members of this plant-specific family of CDK inhibitors.
Assuntos
Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Sequência Conservada , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Mutação , Sinais de Localização Nuclear , Fosforilação , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-TraducionalRESUMO
In this paper, we construct a linear differential system in both continuous time and discrete time to model HIV transmission on the population level. The main question is the determination of parameters based on the posterior information obtained from statistical analysis of the HIV population. We call these parameters dynamic constants in the sense that these constants determine the behavior of the system in various models. There is a long history of using linear or nonlinear dynamic systems to study the HIV population dynamics or other infectious diseases. Nevertheless, the question of determining the dynamic constants in the system has not received much attention. In this paper, we take some initial steps to bridge such a gap. We study the dynamic constants that appear in the linear differential system model in both continuous and discrete time. Our computations are mostly carried out in Matlab.
Assuntos
Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Algoritmos , Simulação por Computador , Saúde Global , Humanos , Análise dos Mínimos Quadrados , Modelos Lineares , Dinâmica não Linear , Dinâmica Populacional , Risco , Software , Estados UnidosRESUMO
Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca(2+) uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H(+))/K(+) symporter that mediates a high-affinity uptake during K(+) deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K(+) efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K(+) loss. Taken together, our results position ILK1 as a link between plant defense pathways and K(+) homeostasis.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/fisiologia , Imunidade Inata , Imunidade Vegetal , Antiportadores de Potássio-Hidrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Calmodulina/metabolismo , Flagelina/farmacologia , Homeostase/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Íons , Manitol/farmacologia , Modelos Biológicos , Mutação/genética , Osmose/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/genéticaRESUMO
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.
Assuntos
Bioensaio/métodos , Luciferases de Vaga-Lume/metabolismo , Luminescência , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Monofosfato de Adenosina/metabolismo , Simulação por Computador , Concentração Inibidora 50 , Cinética , Luciferases de Vaga-Lume/química , Modelos Teóricos , Estrutura Terciária de Proteína , Reprodutibilidade dos TestesRESUMO
The best-characterized members of the plant-specific SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors regulate the transition from the mitotic cell cycle to endoreplication, also known as endoreduplication, an altered version of the cell cycle in which DNA is replicated without cell division. Some other family members are implicated in cell cycle responses to biotic and abiotic stresses. However, the functions of most SMRs remain unknown, and the specific cyclin-dependent kinase complexes inhibited by SMRs are unclear. Here, we demonstrate that a diverse group of SMRs, including an SMR from the bryophyte Physcomitrella patens, can complement an Arabidopsis thaliana siamese (sim) mutant and that both Arabidopsis SIM and P. patens SMR can inhibit CDK activity in vitro. Furthermore, we show that Arabidopsis SIM can bind to and inhibit both CDKA;1 and CDKB1;1. Finally, we show that SMR2 acts to restrict cell proliferation during leaf growth in Arabidopsis and that SIM, SMR1/LGO, and SMR2 play overlapping roles in controlling the transition from cell division to endoreplication during leaf development. These results indicate that differences in SMR function in plant growth and development are primarily due to differences in transcriptional and posttranscriptional regulation, rather than to differences in fundamental biochemical function.
Assuntos
Sequência Conservada , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Embriófitas/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Fenômenos Biomecânicos , Morte Celular , Proliferação de Células , Embriófitas/genética , Endorreduplicação , Técnicas de Inativação de Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Ligação Proteica , Protoplastos/metabolismo , Tricomas/citologia , Tricomas/metabolismo , Tricomas/ultraestruturaRESUMO
Members of the Pht1 family of plant phosphate (Pi) transporters play vital roles in Pi acquisition from soil and in planta Pi translocation to maintain optimal growth and development. The study of the specificities and biochemical properties of Pht1 transporters will contribute to improving the current understanding of plant phosphorus homeostasis and use-efficiency. In this study, we show through split in vivo interaction methods and in vitro analysis of microsomal root tissues that Arabidopsis thalianaâ Pht1;1 and Pht1;4 form homomeric and heteromeric complexes. Transient and heterologous expression of the Pht1;1 variants, Pht1;1(Y312D), Pht1;1(Y312A) and Pht1;1(Y312F), was used to analyse the role of a putative Pi binding residue (Tyr 312) in Pht1;1 transporter oligomerization and function. The homomeric interaction among Pht1;1 proteins was disrupted by mutation of Tyr 312 to Asp, but not to Ala or Phe. In addition, the Pht1;1(Y312D) variant conferred enhanced Pi transport when expressed in yeast cells. In contrast, mutation of Tyr 312 to Ala or Phe did not affect Pht1;1 transport kinetics. Our study demonstrates that modifications to the Pht1;1 higher-order structure affects Pi transport, suggesting that oligomerization may serve as a regulatory mechanism for modulating Pi uptake.