RESUMO
BACKGROUND: Recent data propose a diagnostic and prognostic capacity for citrullinated histone H3 (H3Cit), a marker of neutrophil extracellular traps (NETs), in pathologic conditions such as cancer and thrombosis. However, current research is hampered by lack of standardized assays. OBJECTIVES: We aimed to develop an assay to reliably quantify nucleosomal H3Cit in human plasma. METHODS: We assessed the common practice of in vitro enzymatically modified histone H3 as calibration standards and the specificity of available intrapeptidyl citrulline antibodies. Based on our findings, we developed and validated a novel assay to quantify nucleosomal H3Cit in human plasma. RESULTS: We show that enzymatically citrullinated H3 proteins are compromised by high enzyme-dependent lot variability as well as instability in plasma. We furthermore demonstrate that the majority of commercially available antibodies against intrapeptidyl citrulline display poor specificity for their reported target when tested against a panel of semi-synthetic nucleosomes containing distinct histone H3 citrullinations. Finally, we present a novel assay utilizing highly specific monoclonal antibodies and semi-synthetic nucleosomes containing citrulline in place of arginine at histone H3, arginine residues 2, 8, and 17 (H3R2,8,17Cit) as calibration standards. Rigorous validation of this assay shows its capacity to accurately and reliably quantify nucleosomal H3Cit levels in human plasma with clear elevations in cancer patients compared to healthy individuals. CONCLUSIONS: Our novel approach using defined nucleosome controls enables reliable quantification of H3Cit in human plasma. This assay will be broadly applicable to study the role of histone citrullination in disease and its utility as a biomarker.
Assuntos
Armadilhas Extracelulares , Histonas , Bioensaio , Humanos , Nucleossomos , Plasma , Processamento de Proteína Pós-TraducionalRESUMO
Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer.
Assuntos
Biomarcadores Tumorais/sangue , Histonas/sangue , Neoplasias/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/química , Estudos de Casos e Controles , Citrulinação , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Histonas/química , Humanos , Interleucina-6/sangue , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/mortalidade , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo , PrognósticoRESUMO
There is an emerging interest in the diverse functions of neutrophil extracellular traps (NETs) in a variety of disease settings. However, data on circulating NETs rely largely upon surrogate NET markers such as cell-free DNA, nucleosomes, and NET-associated enzymes. Citrullination of histone H3 by peptidyl arginine deiminase 4 (PAD4) is central for NET formation, and citrullinated histone H3 (H3Cit) is considered a NET-specific biomarker. We therefore aimed to optimize and validate a new enzyme-linked immunosorbent assay (ELISA) to quantify the levels of H3Cit in human plasma. A standard curve made of in vitro PAD4-citrullinated histones H3 allows for the quantification of H3Cit in plasma using an anti-histone antibody as capture antibody and an anti-histone H3 citrulline antibody for detection. The assay was evaluated for linearity, stability, specificity, and precision on plasma samples obtained from a human model of inflammation before and after lipopolysaccharide injection. The results revealed linearity and high specificity demonstrated by the inability of detecting non-citrullinated histone H3. Coefficients of variation for intra- and inter-assay variability ranged from 2.1 to 5.1% and from 5.8 to 13.5%, respectively, allowing for a high precision. Furthermore, our results support an inflammatory induction of a systemic NET burden by showing, for the first time, clear intra-individual elevations of plasma H3Cit in a human model of lipopolysaccharide-induced inflammation. Taken together, our work demonstrates the development of a new method for the quantification of H3Cit by ELISA that can reliably be used for the detection of NETs in human plasma.