Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
mSphere ; 6(6): e0075921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851164

RESUMO

The Antarctic marine ecosystem harbors a wealth of biological and chemical innovation that has risen in concert over millennia since the isolation of the continent and formation of the Antarctic circumpolar current. Scientific inquiry into the novelty of marine natural products produced by Antarctic benthic invertebrates led to the discovery of a bioactive macrolide, palmerolide A, that has specific activity against melanoma and holds considerable promise as an anticancer therapeutic. While this compound was isolated from the Antarctic ascidian Synoicum adareanum, its biosynthesis has since been hypothesized to be microbially mediated, given structural similarities to microbially produced hybrid nonribosomal peptide-polyketide macrolides. Here, we describe a metagenome-enabled investigation aimed at identifying the biosynthetic gene cluster (BGC) and palmerolide A-producing organism. A 74-kbp candidate BGC encoding the multimodular enzymatic machinery (hybrid type I-trans-AT polyketide synthase-nonribosomal peptide synthetase and tailoring functional domains) was identified and found to harbor key features predicted as necessary for palmerolide A biosynthesis. Surveys of ascidian microbiome samples targeting the candidate BGC revealed a high correlation between palmerolide gene targets and a single 16S rRNA gene variant (R = 0.83 to 0.99). Through repeated rounds of metagenome sequencing followed by binning contigs into metagenome-assembled genomes, we were able to retrieve a nearly complete genome (10 contigs) of the BGC-producing organism, a novel verrucomicrobium within the Opitutaceae family that we propose here as "Candidatus Synoicihabitans palmerolidicus." The refined genome assembly harbors five highly similar BGC copies, along with structural and functional features that shed light on the host-associated nature of this unique bacterium. IMPORTANCE Palmerolide A has potential as a chemotherapeutic agent to target melanoma. We interrogated the microbiome of the Antarctic ascidian, Synoicum adareanum, using a cultivation-independent high-throughput sequencing and bioinformatic strategy. The metagenome-encoded biosynthetic machinery predicted to produce palmerolide A was found to be associated with the genome of a member of the S. adareanum core microbiome. Phylogenomic analysis suggests the organism represents a new deeply branching genus, "Candidatus Synoicihabitans palmerolidicus," in the Opitutaceae family of the Verrucomicrobia phylum. The Ca. Synoicihabitans palmerolidicus 4.29-Mb genome encodes a repertoire of carbohydrate-utilizing and transport pathways, a chemotaxis system, flagellar biosynthetic capacity, and other regulatory elements enabling its ascidian-associated lifestyle. The palmerolide producer's genome also contains five distinct copies of the large palmerolide biosynthetic gene cluster that may provide structural complexity of palmerolide variants.


Assuntos
Macrolídeos/análise , Microbiota , Urocordados/microbiologia , Verrucomicrobia/genética , Animais , Regiões Antárticas , Família Multigênica , Filogenia , RNA Ribossômico 16S
2.
Toxins (Basel) ; 13(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357945

RESUMO

At least 40 toxin subtypes of botulinum neurotoxins (BoNTs), a heterogenous group of bacterial proteins, are produced by seven different clostridial species. A key factor that drives the diversity of neurotoxigenic clostridia is the association of bont gene clusters with various genomic locations including plasmids, phages and the chromosome. Analysis of Clostridium sporogenes BoNT/B1 strain CDC 1632, C. argentinense BoNT/G strain CDC 2741, and Clostridium parabotulinum BoNT/B1 strain DFPST0006 genomes revealed bont gene clusters within plasmid-like sequences within the chromosome or nested in large contigs, with no evidence of extrachromosomal elements. A nucleotide sequence (255,474 bp) identified in CDC 1632 shared 99.5% identity (88% coverage) with bont/B1-containing plasmid pNPD7 of C. sporogenes CDC 67071; CDC 2741 contig AYSO01000020 (1.1 MB) contained a ~140 kb region which shared 99.99% identity (100% coverage) with plasmid pRSJ17_1 of C. argentinense BoNT/G strain 89G; and DFPST0006 contig JACBDK0100002 (573 kb) contained a region that shared 100% identity (99%) coverage with the bont/B1-containing plasmid pCLD of C. parabotulinum Okra. This is the first report of full-length plasmid DNA-carrying complete neurotoxin gene clusters integrated in three distinct neurotoxigenic species: C. parabotulinum, C. sporogenes and C. argentinense.


Assuntos
Toxinas Botulínicas/genética , Clostridium/genética , Toxinas Botulínicas Tipo A , Cromossomos , Clostridium botulinum/genética , DNA Bacteriano/genética , Família Multigênica , Neurotoxinas/genética , Filogenia , Plasmídeos
3.
Front Chem ; 9: 802574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004620

RESUMO

Complex interactions exist between microbiomes and their hosts. Increasingly, defensive metabolites that have been attributed to host biosynthetic capability are now being recognized as products of host-associated microbes. These unique metabolites often have bioactivity targets in human disease and can be purposed as pharmaceuticals. Polyketides are a complex family of natural products that often serve as defensive metabolites for competitive or pro-survival purposes for the producing organism, while demonstrating bioactivity in human diseases as cholesterol lowering agents, anti-infectives, and anti-tumor agents. Marine invertebrates and microbes are a rich source of polyketides. Palmerolide A, a polyketide isolated from the Antarctic ascidian Synoicum adareanum, is a vacuolar-ATPase inhibitor with potent bioactivity against melanoma cell lines. The biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites are encoded in the genomes of the producers as discrete genomic elements. A candidate palmerolide BGC was identified from a S. adareanum microbiome-metagenome based on a high degree of congruence with a chemical structure-based retrobiosynthetic prediction. Protein family homology analysis, conserved domain searches, active site and motif identification were used to identify and propose the function of the ∼75 kbp trans-acyltransferase (AT) polyketide synthase-non-ribosomal synthase (PKS-NRPS) domains responsible for the stepwise synthesis of palmerolide A. Though PKS systems often act in a predictable co-linear sequence, this BGC includes multiple trans-acting enzymatic domains, a non-canonical condensation termination domain, a bacterial luciferase-like monooxygenase (LLM), and is found in multiple copies within the metagenome-assembled genome (MAG). Detailed inspection of the five highly similar pal BGC copies suggests the potential for biosynthesis of other members of the palmerolide chemical family. This is the first delineation of a biosynthetic gene cluster from an Antarctic microbial species, recently proposed as Candidatus Synoicihabitans palmerolidicus. These findings have relevance for fundamental knowledge of PKS combinatorial biosynthesis and could enhance drug development efforts of palmerolide A through heterologous gene expression.

4.
Front Genet ; 12: 821715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096026

RESUMO

Public sequencing databases are invaluable resources to biological researchers, but assessing data veracity as well as the curation and maintenance of such large collections of data can be challenging. Genomes of eukaryotic organelles, such as chloroplasts and other plastids, are particularly susceptible to assembly errors and misrepresentations in these databases due to their close evolutionary relationships with bacteria, which may co-occur within the same environment, as can be the case when sequencing plants. Here, based on sequence similarities with bacterial genomes, we identified several suspicious chloroplast assemblies present in the National Institutes of Health (NIH) Reference Sequence (RefSeq) collection. Investigations into these chloroplast assemblies reveal examples of erroneous integration of bacterial sequences into chloroplast ribosomal RNA (rRNA) loci, often within the rRNA genes, presumably due to the high similarity between plastid and bacterial rRNAs. The bacterial lineages identified within the examined chloroplasts as the most likely source of contamination are either known associates of plants, or co-occur in the same environmental niches as the examined plants. Modifications to the methods used to process untargeted 'raw' shotgun sequencing data from whole genome sequencing efforts, such as the identification and removal of bacterial reads prior to plastome assembly, could eliminate similar errors in the future.

5.
Toxins (Basel) ; 11(12)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775284

RESUMO

The sequenced genome and the leaf transcriptome of a near relative of Abrus pulchellus and Abrus precatorius was analyzed to characterize the genetic basis of toxin gene expression. From the high-quality genome assembly, a total of 26 potential coding regions were identified that contain genes with abrin-like, pulchellin-like, and agglutinin-like homology, with full-length transcripts detected in leaf tissue for 9 of the 26 coding regions. All of the toxin-like genes were identified within only five isolated regions of the genome, with each region containing 1 to 16 gene variants within each genomic region (<1 Mbp). The Abrusprecatorius cultivar sequenced here contains genes which encode for proteins that are homologous to certain abrin and prepropulchellin genes previously identified, and we observed substantial diversity of genes and predicted gene products in Abrus precatorius and previously characterized toxins. This suggests diverse toxin repertoires within Abrus, potentially the results of rapid toxin evolution.


Assuntos
Abrina/genética , Abrus/genética , Genoma de Planta/genética , DNA de Plantas/química , DNA de Plantas/genética , Filogenia , Folhas de Planta/química , Lectinas de Plantas , Toxinas Biológicas , Transcriptoma , Sequenciamento Completo do Genoma
6.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649092

RESUMO

A high-quality draft genome sequence of the microalgal species Tetraselmis striata was generated using PacBio sequencing. The assembled genome is 228 Mb, derived from 3,613 polished contigs at 84× coverage depth. This genome contains an average GC content of 57.9% and 48,906 predicted genes.

8.
Genome Announc ; 5(16)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428312

RESUMO

In this report, a chromium-reducing bacterium, Pseudomonas fluorescens strain S613, was isolated from a Cr(VI)-contaminated aquifer at Los Alamos, NM, and sequenced. The size of the draft genome sequence is approximately 6.7 Mb.

9.
Genome Announc ; 5(10)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28280013

RESUMO

Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%.

10.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082501

RESUMO

Porphyromonas gingivalis is associated with both oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes do not reliably predict disease presentation during in vivo studies. Here, we present the genome sequence of 381, a common laboratory strain, with a single contig of 2,378,872 bp and a G+C content of 48.36%.

11.
Microbiologyopen ; 6(2)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27860341

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P. putida strain II-B was specifically enriched in the RDX-degrading samples. Analysis of the accumulation of RDX-degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring-cleavage. The results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA-16 site-specific conditions.


Assuntos
Actinobacteria/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Proteobactérias/metabolismo , Triazinas/metabolismo , Poluição Química da Água/análise , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Biodegradação Ambiental , Microbiota/genética , Filogenia , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiologia da Água
12.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811091

RESUMO

The microalgal division Haptophyta uses a range of nutritional sourcing, including mixotrophy. The genome of a member of this taxon, Chrysochromulina tobin, suggests that interactions with its bacterial cohort are critical for C. tobin physiology. Here, we report the genomes of eight bacterial species in coculture with C. tobin.

14.
Genome Announc ; 3(6)2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26659672

RESUMO

We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

15.
Genome Announc ; 3(6)2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26543127

RESUMO

Porphyromonas gingivalis is associated with oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes have been correlated with disease presentation in infected laboratory animals. Here, we present the genome sequence of AJW4, a minimally invasive strain, with a single contig of 2,372,492 bp and a G+C content of 48.27%.

16.
Genome Announc ; 3(5)2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26404590

RESUMO

Porphyromonas gingivalis is strongly associated with periodontitis. P. gingivalis strain trafficking and tissue homing differ widely, even among presumptive closely related strains, such as W83 and A7436. Here, we present the genome sequence of A7436 with a single contig of 2,367,029 bp and a G+C content of 48.33%.

17.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383662

RESUMO

Here, we sequenced the completed genome of Yersinia pestis EV76D and KIM 10v, two genomes used as references in assay development, to improved high-quality draft status.

18.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383663

RESUMO

Yersinia pestis, the causative agent of plague, is endemic to the Caucasus region but few reference strain genome sequences from that region are available. Here, we present the improved draft or finished assembled genomes from 11 strains isolated in the nation of Georgia and surrounding countries.

19.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383665

RESUMO

We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The final assembly is available in NCBI under accession number CP012037.

20.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931589

RESUMO

Francisella tularensis is a highly infectious bacterium with the potential to cause high fatality rates if infections are untreated. To aid in the development of rapid and accurate detection assays, we have sequenced and annotated the genomes of 18 F. tularensis and Francisella philomiragia strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA