Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respirology ; 24(2): 127-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30419605

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, with various clinical manifestations that affect pulmonary, digestive, exocrine and male reproductive functions as well as the bones and kidneys. This study aimed to reveal the spectrum of CFTR gene mutations in Arab CF patients and their corresponding clinical phenotypes among the 22 Arab countries. We searched four literature databases (PubMed, Science Direct, Web of Science and Scopus) from their times of inception to January 2018. All possible search terms were used to encompass the different clinical phenotypes, disease incidences, CFTR mutations, ages and consanguinity rates of CF patients in the 22 Arab countries. Our search strategy identified 678 articles; of these, 72 were eligible for this systematic review. We retrieved data from 18 Arab countries; only 1766 Arab patients with CF were identified, even after additional searches using Google and Google Scholar. The search uncovered a wide spectrum of mutations, some of which are shared with other ethnic groups and some unique to Arab patients. Although the clinical phenotypes of Arab patients were typical of CF, several distinct phenotypes were reported. Despite the rarity of genetic epidemiological studies of CF patients among the 22 Arab nations, the disease is frequently reported in Arab countries where consanguineous marriage is common. Therefore, significant attention should be paid to this problem by implementing carrier and premarital screening, newborn screening and genetic counselling.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Árabes/genética , Fibrose Cística/epidemiologia , Fibrose Cística/genética , Estudos de Associação Genética , Humanos , Mutação
2.
J Biol Chem ; 291(5): 2119-35, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26655722

RESUMO

The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein ß (C/EBPß) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity.


Assuntos
Adipócitos/metabolismo , Regulação da Expressão Gênica , Hiperplasia/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Proliferação de Células , Fibroblastos/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Hipertrofia/metabolismo , Inflamação , Camundongos , Obesidade/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA