Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Epigenet ; 5(4): dvz024, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31853372

RESUMO

Persistent organic pollutants (POPs) can induce epigenetic changes in the paternal germline. Here, we report that folic acid (FA) supplementation mitigates sperm miRNA profiles transgenerationally following in utero paternal exposure to POPs in a rat model. Pregnant founder dams were exposed to an environmentally relevant POPs mixture (or corn oil) ± FA supplementation and subsequent F1-F4 male descendants were not exposed to POPs and were fed the FA control diet. Sperm miRNA profiles of intergenerational (F1, F2) and transgenerational (F3, F4) lineages were investigated using miRNA deep sequencing. Across the F1-F4 generations, sperm miRNA profiles were less perturbed with POPs+FA compared to sperm from descendants of dams treated with POPs alone. POPs exposure consistently led to alteration of three sperm miRNAs across two generations, and similarly one sperm miRNA due to POPs+FA; which was in common with one POPs intergenerationally altered sperm miRNA. The sperm miRNAs that were affected by POPs alone are known to target genes involved in mammary gland and embryonic organ development in F1, sex differentiation and reproductive system development in F2 and cognition and brain development in F3. When the POPs treatment was combined with FA supplementation, however, these same miRNA-targeted gene pathways were perturbed to a lesser extend and only in F1 sperm. These findings suggest that FA partially mitigates the effect of POPs on paternally derived miRNA in a intergenerational manner.

2.
Oncogene ; 32(36): 4243-51, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23108396

RESUMO

H2A.Z association with specific genomic loci is thought to contribute to a chromatin structure that promotes transcription activation. Acetylation of H2A.Z at promoters of oncogenes has been linked to tumorigenesis. The mechanism is unknown. Here, we show that in triple negative breast cancer cells, H2A.Z bound to the promoter of the constitutively, weakly expressed cyclin D1 oncogene (CCND1), a key regulator of cellular proliferation. Depleting the pool of H2A.Z stimulated transcription of CCND1 in the absence of its cognate transcription factor, the estrogen receptor (ER). During activation of CCND1, H2A.Z was released from the transcription start site (TSS) and downstream enhancer (enh2) sequences. Concurrently, acetylation of H2A.Z, H3 and H4 at the TSS was increased but only H2A.Z was acetylated at enh2. Acetylation of H2A.Z required the Tip60 acetyltransferase to be associated with the activated CCND1 on both TSS and enh2 sites. Depletion of Tip60 prevented CCND1 activation. Chromosome conformation capture experiments (3C) revealed specific contacts between the TSS and enh2 chromatin regions. These results suggest that release of a histone H2A.Z-mediated repression loop activates CCND1 for transcription. Our findings open new avenues for controlling and understanding aberrant gene expression associated with tumorigenesis.


Assuntos
Ciclina D1/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Histonas/metabolismo , Regiões Promotoras Genéticas , Acetilação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Modelos Biológicos , Conformação de Ácido Nucleico , Ativação Transcricional
3.
Oncogene ; 32(42): 5123-8, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23160377

RESUMO

Cdc25B phosphatases have a key role in G2/M cell-cycle progression by activating the CDK1-cyclinB1 complexes and functioning as important targets of checkpoints. Overexpression of Cdc25B results in a bypass of the G2/M checkpoint and illegitimate entry into mitosis. It can also cause replicative stress, which leads to genomic instability. Thus, fine-tuning of the Cdc25B expression level is critical for correct cell-cycle arrest in response to DNA damage. In response to genotoxic stress, Cdc25B is mainly regulated by post-transcriptional mechanisms affecting either Cdc25B protein stability or translation. Here, we show that upon DNA damage Cdc25B can be regulated at the transcriptional level. Although ionizing radiation downregulates Cdc25B in a p53-dependent pathway, doxorubicin transcriptionally upregulates Cdc25B in p53-proficient cancer cells. We show that in the presence of wild-type p53, doxorubicin activates the Cdc25B promoter by preventing the binding of Sp1 and increasing the binding of NF-Y on the Cdc25B promoter, thus preventing p53 from downregulating this promoter. Our results highlight the mechanistically distinct regulation of the three Cdc25 phosphatases by checkpoint signalling following doxorubicin treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fosfatases cdc25/genética , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Doxorrubicina/efeitos da radiação , Genes p53 , Células HCT116/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Regulação para Cima , Fosfatases cdc25/metabolismo
4.
Oncogene ; 30(19): 2282-8, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21242964

RESUMO

Cdc25B phosphatases function as key players in G2/M cell cycle progression by activating the CDK1-cyclinB1 complexes. They also have an essential role in recovery from the G2/M checkpoint activated in response to DNA damage. Overexpression of Cdc25B results in bypass of the G2/M checkpoint and illegitimate entry into mitosis, and also causes replicative stress, leading to genomic instability. Thus, fine-tuning of Cdc25B expression level is critical for correct cell cycle progression and G2 checkpoint recovery. However, the transcriptional regulation of Cdc25B remains largely unknown. Earlier studies have shown that the tumor suppressor p53 overexpression transcriptionally represses Cdc25B; however, the molecular mechanism of this repression has not yet been elucidated, although it was suggested to occur through the induction of p21. Here we show that Cdc25B is downregulated by the basal level of p53 in multiple cell types. This downregulation also occurs in p21-/- cell lines, indicating that p21 is not required for p53-mediated regulation of Cdc25B. Deletion and mutation analyses of the Cdc25B promoter revealed that downregulation by p53 is dependent on the presence of functional Sp1/Sp3 and NF-Y binding sites. Furthermore, chromatin immunoprecipitation analyses show that p53 binds to the Cdc25B promoter and mediates transcriptional attenuation through the Sp1 and NF-Y transcription factors. Our results suggest that the inability to downregulate Cdc25B after loss of p53 might contribute to tumorigenesis.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Fator de Transcrição Sp1/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Fosfatases cdc25/fisiologia , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA