Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34948958

RESUMO

Particulate matter less than or equal to 10 µm in aerodynamic diameter (PM10 µg/m3) is a priority air pollutant and one of the most widely monitored ambient air pollutants in South Africa. This study analyzed PM10 from monitoring 44 sites across four provinces of South Africa (Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal) and aimed to present spatial and temporal variation in the PM10 concentration across the provinces. In addition, potential influencing factors of PM10 variations around the three site categories (Residential, Industrial and Traffic) were explored. The spatial trend in daily PM10 concentration variation shows PM10 concentration can be 5.7 times higher than the revised 2021 World Health Organization annual PM10 air quality guideline of 15 µg/m3 in Gauteng province during the winter season. Temporally, the highest weekly PM10 concentrations of 51.4 µg/m3, 46.8 µg/m3, 29.1 µg/m3 and 25.1 µg/m3 at Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape Province were recorded during the weekdays. The study results suggest a decrease in the change of annual PM10 levels at sites in Gauteng and Mpumalanga Provinces. An increased change in annual PM10 levels was reported at most sites in Western Cape and KwaZulu-Natal.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , África do Sul
2.
Artigo em Inglês | MEDLINE | ID: mdl-33805155

RESUMO

Good quality and completeness of ambient air quality monitoring data is central in supporting actions towards mitigating the impact of ambient air pollution. In South Africa, however, availability of continuous ground-level air pollution monitoring data is scarce and incomplete. To address this issue, we developed and compared different modeling approaches to impute missing daily average particulate matter (PM10) data between 2010 and 2017 using spatiotemporal predictor variables. The random forest (RF) machine learning method was used to explore the relationship between average daily PM10 concentrations and spatiotemporal predictors like meteorological, land use and source-related variables. National (8 models), provincial (32) and site-specific (44) RF models were developed to impute missing daily PM10 data. The annual national, provincial and site-specific RF cross-validation (CV) models explained on average 78%, 70% and 55% of ground-level PM10 concentrations, respectively. The spatial components of the national and provincial CV RF models explained on average 22% and 48%, while the temporal components of the national, provincial and site-specific CV RF models explained on average 78%, 68% and 57% of ground-level PM10 concentrations, respectively. This study demonstrates a feasible approach based on RF to impute missing measurement data in areas where data collection is sparse and incomplete.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , África do Sul
3.
Artigo em Inglês | MEDLINE | ID: mdl-29996511

RESUMO

Air pollution can cause many adverse health outcomes, including cardiovascular and respiratory disorders. Land use regression (LUR) models are frequently used to describe small-scale spatial variation in air pollution levels based on measurements and geographical predictors. They are particularly suitable in resource limited settings and can help to inform communities, industries, and policy makers. Weekly measurements of NO2 and PM2.5 were performed in three informal areas of the Western Cape in the warm and cold seasons 2015⁻2016. Seasonal means were calculated using routinely monitored pollution data. Six LUR models were developed (four seasonal and two annual) using a supervised stepwise land-use-regression method. The models were validated using leave-one-out-cross-validation and tested for spatial autocorrelation. Annual measured mean NO2 and PM2.5 were 22.1 μg/m³ and 10.2 μg/m³, respectively. The NO2 models for the warm season, cold season, and overall year explained 62%, 77%, and 76% of the variance (R²). The PM2.5 annual models had lower explanatory power (R² = 0.36, 0.29, and 0.29). The best predictors for NO2 were traffic related variables (major roads, bus routes). Local sources such as grills and waste burning sites appeared to be good predictors for PM2.5, together with population density. This study demonstrates that land-use-regression modelling for NO2 can be successfully applied to informal peri-urban settlements in South Africa using similar predictor variables to those performed in Europe and North America. Explanatory power for PM2.5 models is lower due to lower spatial variability and the possible impact of local transient sources. The study was able to provide NO2 and PM2.5 seasonal exposure estimates and maps for further health studies.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Áreas de Pobreza , Análise de Regressão , Estações do Ano , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA