Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Sci Rep ; 14(1): 7444, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548832

RESUMO

Urinary incontinence is a common complication following radical prostatectomy, as the surgery disturbs critical anatomical structures. This study explored how pudendal nerve (PN) injury affects urinary continence in male rats. In an acute study, leak point pressure (LPP) and external urethral sphincter electromyography (EMG) were performed on six male rats with an intact urethra, the urethra exposed (UE), the PN exposed (NE), and after PN transection (PNT). In a chronic study, LPP and EMG were tested in 67 rats 4 days, 3 weeks, or 6 weeks after sham PN injury, PN crush (PNC), or PNT. Urethras were assessed histologically. Acute PNT caused a significant decrease in LPP and EMG amplitude and firing rate compared to other groups. PNC resulted in a significant reduction in LPP and EMG firing rate 4 days, 3 weeks, and 6 weeks later. EMG amplitude was also significantly reduced 4 days and 6 weeks after PNC. Neuromuscular junctions were less organized and less innervated after PNC or PNT at all timepoints compared to sham injured animals. Collagen infiltration was significantly increased after PNC and PNT compared to sham at all timepoints. This rat model could facilitate preclinical testing of neuroregenerative therapies for post-prostatectomy incontinence.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Pudendo , Incontinência Urinária por Estresse , Incontinência Urinária , Masculino , Ratos , Animais , Incontinência Urinária por Estresse/etiologia , Incontinência Urinária por Estresse/patologia , Ratos Sprague-Dawley , Nervo Pudendo/patologia , Modelos Animais de Doenças , Traumatismos dos Nervos Periféricos/complicações , Incontinência Urinária/complicações
2.
IEEE Sens J ; 24(6): 7308-7316, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38500510

RESUMO

Continuous monitoring of bladder activity during normal daily activities would improve clinical diagnostics and understanding of the mechanisms underlying bladder function, or help validate how differing neuromodulation strategies affect the bladder. This work describes a urological monitor of conscious activity (UroMOCA). The UroMOCA included a pressure sensor, urine impedance-sensing electrodes, and wireless battery recharge and data transmission circuitry. Components were assembled on a circuit board and encapsulated with an epoxy/silicone molded package that allowed Pt-Ir electrode feedthrough for urine contact. Packaged UroMOCAs measured 12 × 18 × 6 mm. UroMOCAs continuously transmitted data from all onboard sensors at 10 Hz at 30 cm range, and ran for up to 44 hours between wireless recharges. After in vitro calibration, implantations were performed in 11 animals. Animals carried the device for 28 days, enabling many observations of bladder behavior during natural, conscious behavior. In vivo testing confirmed the UroMOCA did not impact bladder function after a two-week healing period. Pressure data in vivo were highly correlated to a reference catheter used during an anesthetized follow-up. Static volume sensor data were less accurate, but demonstrated reliable detection of bladder volume decreases, and distinguished between voiding and non-voiding bladder events.

3.
Neurourol Urodyn ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048061

RESUMO

AIMS: Lower urinary tract dysfunctions (LUTD) are very common and, importantly, affect patients' quality of life (QoL). LUTD can range from urinary retention to urgency incontinence and includes a variety of symptoms. Nerve stimulation (NS) is an accepted widespread treatment with documented success for LUTD and is used widely. The aim of this review is to report the results of the discussion about how to improve the outcomes of NS for LUTD treatment. METHODS: During its 2023 meeting in Bristol, the International Consultation on Incontinence Research Society discussed a literature review, and there was an expert consensus discussion focused on the emerging awareness of NS suitable for LUTD. RESULTS: The consensus discussed how to improve techniques and patients' selection in NS, and high-priority research questions were identified. CONCLUSIONS: Technique improvement, device programming, and patient selection are the goals of the current approach to NS. The conditional nerve stimulation with minimally invasive wireless systems and tailored algorithms hold promise for improving NS for LUTD, particularly for patients with neurogenic bladder who represent the new extended population to be treated.

4.
Neurourol Urodyn ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38149773

RESUMO

INTRODUCTION: A session at the 2023 International Consultation on Incontinence - Research Society (ICI-RS) held in Bristol, UK, focused on the question: Is the time right for a new initiative in mathematical modeling of the lower urinary tract (LUT)? The LUT is a complex system, comprising various synergetic components (i.e., bladder, urethra, neural control), each with its own dynamic functioning and high interindividual variability. This has led to a variety of different types of models for different purposes, each with advantages and disadvantages. METHODS: When addressing the LUT, the modeling approach should be selected and sized according to the specific purpose, the targeted level of detail, and the available computational resources. Four areas were selected as examples to discuss: utility of nomograms in clinical use, value of fluid mechanical modeling, applications of models to simplify urodynamics, and utility of statistical models. RESULTS: A brief literature review is provided along with discussion of the merits of different types of models for different applications. Remaining research questions are provided. CONCLUSIONS: Inadequacies in current (outdated) models of the LUT as well as recent advances in computing power (e.g., quantum computing) and methods (e.g., artificial intelligence/machine learning), would dictate that the answer is an emphatic "Yes, the time is right for a new initiative in mathematical modeling of the LUT."

6.
J Urol ; 210(1): 186-195, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293725

RESUMO

PURPOSE: Urodynamics is the standard method of diagnosing bladder dysfunction, but involves catheters and retrograde bladder filling. With these artificial conditions, urodynamics cannot always reproduce patient complaints. We have developed a wireless, catheter-free intravesical pressure sensor, the UroMonitor, which enables catheter-free telemetric ambulatory bladder monitoring. The purpose of this study was twofold: to evaluate accuracy of UroMonitor pressure data, and assess safety and feasibility of use in humans. MATERIALS AND METHODS: Eleven adult female patients undergoing urodynamics for overactive bladder symptoms were enrolled. After baseline urodynamics, the UroMonitor was transurethrally inserted into the bladder and position was confirmed cystoscopically. A second urodynamics was then performed with the UroMonitor simultaneously transmitting bladder pressure. Following removal of urodynamics catheters, the UroMonitor transmitted bladder pressure during ambulation and voiding in private. Visual analogue pain scales (0-5) were used to assess patient discomfort. RESULTS: The UroMonitor did not significantly alter capacity, sensation, or flow during urodynamics. The UroMonitor was also easily inserted and removed in all subjects. The UroMonitor reproduced bladder pressure, capturing 98% (85/87) of voiding and nonvoiding urodynamic events. All subjects voided with only the UroMonitor in place with low post-void residual volume. Median ambulatory pain score with the UroMonitor was rated 0 (0-2). There were no post-procedural infections or changes to voiding behavior. CONCLUSIONS: The UroMonitor is the first device to enable catheter-free telemetric ambulatory bladder pressure monitoring in humans. The UroMonitor appears safe and well tolerated, does not impede lower urinary tract function, and can reliably identify bladder events compared to urodynamics.


Assuntos
Bexiga Urinária , Micção , Adulto , Humanos , Feminino , Cateteres Urinários/efeitos adversos , Urodinâmica , Sujeitos da Pesquisa
7.
IEEE Trans Biomed Circuits Syst ; 17(5): 941-951, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37363840

RESUMO

Monitoring of colon activity is currently limited to tethered systems like anorectal manometry. These systems have significant drawbacks, but fundamentally limit the observation time of colon activity, reducing the likelihood of detecting specific clinical events. While significant technological advancement has been directed to mobile sensor capsules, this work describes the development and feasibility of a stationary sensor for describing the coordinated activity between neighboring segments of the colon. Unlike wireless capsules, this device remains in position and measures propagating pressure waves and impedances between colon segments to describe activity and motility. This low-power, flexible, wireless sensor-the colon monitor to capture activity (ColoMOCA) was validated in situ and in vivo over seven days of implantation. The ColoMOCA diameter was similar to common endoscopes to allow for minimally invasive diagnostic placement. The ColoMOCA included two pressure sensors, and three impedance-sensing electrodes arranged to describe the differential pressures and motility between adjacent colon segments. To prevent damage after placement in the colon, the ColoMOCA was fabricated with a flexible polyimide circuit board and a silicone rubber housing. The resulting device was highly flexible and suitable for surgical attachment to the colon wall. In vivo testing performed in eleven animals demonstrated suitability of both short term (less than 3 hours) and 7-day implantations. Data collected wirelessly from animal experiments demonstrated the ColoMOCA described colon activity similarly to wired catheters and allowed untethered, conscious monitoring of organ behavior.


Assuntos
Colo , Próteses e Implantes , Animais , Eletrodos , Impedância Elétrica , Catéteres
8.
Biomedicines ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371634

RESUMO

Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.

9.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902428

RESUMO

In women, stress urinary incontinence (SUI), leakage of urine from increased abdominal pressure, is correlated with pudendal nerve (PN) injury during childbirth. Expression of brain-derived neurotrophic factor (BDNF) is dysregulated in a dual nerve and muscle injury model of childbirth. We aimed to use tyrosine kinase B (TrkB), the receptor of BDNF, to bind free BDNF and inhibit spontaneous regeneration in a rat model of SUI. We hypothesized that BDNF is essential for functional recovery from the dual nerve and muscle injuries that can lead to SUI. Female Sprague-Dawley rats underwent PN crush (PNC) and vaginal distension (VD) and were implanted with osmotic pumps containing saline (Injury) or TrkB (Injury + TrkB). Sham Injury rats received sham PNC + VD. Six weeks after injury, animals underwent leak-point-pressure (LPP) testing with simultaneous external urethral sphincter (EUS) electromyography recording. The urethra was dissected for histology and immunofluorescence. LPP after injury and TrkB was significantly decreased compared to Injury rats. TrkB treatment inhibited reinnervation of neuromuscular junctions in the EUS and promoted atrophy of the EUS. These results demonstrate that BDNF is essential to neuroregeneration and reinnervation of the EUS. Treatments aimed at increasing BDNF periurethrally could promote neuroregeneration to treat SUI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Traumatismos dos Nervos Periféricos , Incontinência Urinária por Estresse , Animais , Feminino , Gravidez , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parto Obstétrico , Modelos Animais de Doenças , Músculos/metabolismo , Parto , Traumatismos dos Nervos Periféricos/patologia , Ratos Sprague-Dawley , Uretra/patologia , Incontinência Urinária por Estresse/metabolismo
10.
Int Urogynecol J ; 34(7): 1635-1644, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36662271

RESUMO

INTRODUCTION AND HYPOTHESIS: New treatments are needed for pelvic floor disorders. ReGeneraTing Agent® (RGTA®) is a promising regenerative therapy. Therefore, the objective of this study was to compare regenerative abilities of mesenchymal stem cells (MSCs) and RGTA® on regeneration after simulated childbirth injury in rats. METHODS: Rats underwent pudendal nerve crush and vaginal distension (PNC+VD) or sham injury. Rats that underwent PNC+VD were treated intravenously with vehicle, MSCs or RGTA® 1 h, 7 days, and 14 days after surgery. Sham rats received 1 ml vehicle at all time points. After 21 days, urethral function and pudendal nerve function were tested. Vaginal tissues were harvested for biomechanical testing and histology. Biaxial testing was performed to measure tissue stiffness. RESULTS: PNC+VD decreased urethral and pudendal nerve function compared with sham. Vaginal wall stiffness was significantly decreased in longitudinal and transverse tissue axes after PNC+VD compared with sham. MSC or RGTA® did not restore urethral or pudendal nerve function. However, MSC treatment resolved loss in vaginal wall stiffness in both tissue axes and improved collagen content within the vaginal wall. RGTA® treatment increased vaginal wall anisotropy by increasing relative stiffness in the longitudinal direction. PNC+VD (with vehicle or MSCs) enhanced elastogenesis, which was not observed after RGTA® treatment. CONCLUSIONS: Treatment with MSCs facilitated recovery of vaginal wall biomechanical properties and connective tissue composition after PNC+VD, whereas treatment with RGTA® resulted in anisotropic biomechanical changes. This indicates that MSCs and RGTA® promote different aspects of vaginal tissue regeneration after simulated childbirth injury.


Assuntos
Células-Tronco Mesenquimais , Incontinência Urinária por Estresse , Feminino , Ratos , Gravidez , Animais , Ratos Sprague-Dawley , Fenômenos Biomecânicos , Vagina , Modelos Animais de Doenças
11.
Tissue Eng Part A ; 29(3-4): 93-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36341592

RESUMO

Aim: The aim of this study is to investigate if a high dose of the stromal cell-derived factor-1 (SDF-1) plasmid improves outcome in a minipig model of chronic anal sphincter injury. Methods: Twenty-two female minipigs underwent excision of the posterior hemicircumference of the anal sphincter complex and were allowed to recover for 6 weeks. They were randomly allocated (n = 6) to receive either 5% dextrose (sham) or 2, 4, or 8 mg of SDF-1 plasmid at the defect site. Two control pigs received no surgery/treatment. Outcome measures included anal manometry at preinjury/pretreatment and 2, 4, and 8 weeks after treatment, recording the mean of eight pressure channels and the posterior channel alone, histopathology using Masson's trichrome, and immunohistochemistry using PGP9.5 for staining of neural structures, and CY3 staining for blood vessels. Data are expressed as mean ± standard error. Manometry analysis used two-way analysis of variance (ANOVA) followed by the Holm-Sidak test. Quantification of muscle/fibrosis was analyzed with a Kruskal-Wallis one-way ANOVA on ranks. Results: Posterior anal pressures were significantly decreased in sham treated animals compared with controls (p = 0.04). In contrast, mean anal pressures at the four time points were not significantly different between groups (p > 0.05). The defect area of the sham treated group showed irregular muscle bundles, while all three SDF-1 treatment groups show organized muscle bundles, with the most organization in the higher dose groups. Quantification of Masson-stained slides showed no statistically significant differences between groups, but did show increased muscle volume in the area of defect in the treatment groups compared with sham. PGP9.5 and CY3 staining showed increased fluorescence in the higher dose groups compared with sham treatment. Conclusion: A single higher dose of the plasmid encoding SDF-1 may increase muscle volume in the area of a chronic defect. Impact statement Fecal or bowel incontinence as a result of a torn anal sphincter complex remains undetected for many years. The resulting defect does not respond well to surgical repair. Regenerating the anal sphincter complex with functional muscle has been a long-term goal. Stem cells home to a site of a chronic injury and cause regeneration when a cell signaling mechanism is available. Stromal cell-derived factor-1 is one such cytokine that has been well researched by us and others to have this effect. It is easy to use clinically and has been used in other applications in humans and considered safe.


Assuntos
Canal Anal , Quimiocina CXCL12 , Ratos , Humanos , Animais , Feminino , Suínos , Canal Anal/patologia , Canal Anal/cirurgia , Ratos Sprague-Dawley , Porco Miniatura , Regeneração
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3718-3722, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085686

RESUMO

Urodynamics is the current gold-standard for diagnosing lower urinary tract dysfunction, but uses non-physiologically fast, retrograde cystometric filling to obtain a brief snapshot of bladder function. Ambulatory urodynamics allows physicians to evaluate bladder function during natural filling over longer periods of time, but artifacts generated from patient movement necessitate the use of an abdominal pressure sensor, which makes long-term monitoring and feedback for closed-loop treatment impractical. In this paper, we analyze the characteristics of single-channel bladder pressure signals from human and feline datasets, and present an algorithm designed to estimate detrusor pressure, which is useful for diagnosis and treatment. We utilize multiresolution analysis techniques to maximize the attenuation of probable abdominal pressure components in the vesical pressure signal. Results indicate a strong correlation, averaging 0.895 ± 0.121 (N = 40) and 0.812 ± 0.113 (N = 16) between the estimated detrusor pressure obtained by the proposed method and recorded urodynamic data from human and feline subjects, respectively. Clinical Relevance- This work establishes that signal pro-cessing techniques may be applied to vesical pressure alone to accurately reconstruct pressures generated independently by the detrusor muscle. This is relevant for emerging sensors that measure vesical pressure alone or for data analysis of bladder pressure in ambulatory subjects which contains significant abdominal pressure artifacts.


Assuntos
Bexiga Urinária , Urodinâmica , Algoritmos , Instituições de Assistência Ambulatorial , Animais , Artefatos , Gatos , Humanos
13.
Nat Rev Urol ; 19(10): 581-596, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974244

RESUMO

Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.


Assuntos
Diabetes Mellitus , Bexiga Urinária , Humanos , Estresse Oxidativo , Bexiga Urinária/metabolismo , Urotélio/metabolismo
14.
Front Cell Neurosci ; 16: 866094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663428

RESUMO

Traumatic neuromuscular injury to the pudendal nerve and urethra during childbirth does not regenerate well and contributes to stress urinary incontinence in women. Mesenchymal stem cells (MSCs) can improve neuroregeneration via their secretions, or secretome, which includes brain-derived neurotrophic factor (BDNF). In this study, we investigated whether BDNF is a key factor in the secretome of MSCs for the facilitation of functional recovery following a dual simulated childbirth injury. BDNF knockdown (KD) MSCs were created using an anti-BDNF shRNA lentivirus vector. A scrambled sequence was used as a transduction control (scrambled). Cells were cultured for 24 h before media was concentrated 50x to create concentrated conditioned media (CCM) containing MSC secretome. CCM of unmanipulated MSCs was screened for high BDNF expression (high BDNF CCM). Concentrated control media (CM) was created by concentrating media not conditioned by cells. Female Sprague-Dawley rats underwent bilateral pudendal nerve crush and vaginal distension (Injury) or sham injury. One hour and 1 week after injury, sham injured rats received CM, and injured rats received CM, high BDNF CCM, KD CCM, or scrambled CCM (300 µl intraperitoneally). Three weeks after injury, rats underwent leak point pressure (LPP) and pudendal nerve sensory branch potential (PNSBP) recordings. The urethra and pudendal nerve were harvested for anatomical assessment. ANOVA followed by the Student-Newman-Keuls test determined significant differences between groups (p < 0.05). BDNF KD CCM had significantly decreased BDNF concentration compared to scrambled CCM, while the concentration in high BDNF CCM was significantly increased. LPP was significantly decreased in CM and KD CCM treated animals compared to sham injury, but not with scrambled or high BDNF CCM. PNSBP firing rate showed a significant decrease with CM treatment compared to sham injury. Neuromuscular junctions in the urethral sphincter in KD CCM, scrambled CCM, and high BDNF CCM were healthier than CM treated rats. While anatomical and nerve function tests demonstrate regeneration of the pudendal nerve with any CCM treatment, LPP results suggest it takes longer to recover continence with reduced BDNF in CCM. BDNF in MSC CCM is an important factor for the acceleration of recovery from a dual nerve and muscle injury.

16.
J Tissue Eng Regen Med ; 16(4): 355-366, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092171

RESUMO

The aim of this study was to evaluate regeneration of a chronic large anal sphincter defect in a pig model after treatment with a plasmid encoding Stromal Cell Derived Factor-1(SDF-1). METHODS: Under ethics approved protocol 19 age/weight matched Sinclair mini-pigs were subjected to excision of the posterior 50% of anal sphincter muscle and left to recover for 6 weeks. They were randomly allocated to receive either saline treatment (Saline 1 ml, n = 5), 1 injection of SDF-1 plasmid 2 mg/ml (1 SDF-1, n = 9) or 2 injections of SDF-1, 2 mg/ml each at 2 weeks intervals (2 SDF-1, n = 5). Euthanasia occurred 8 weeks after the last treatment. In vivo outcomes included anal resting pressures done under anesthesia pre-injury, pre-injection and before euthanasia (8 weeks after treatment). Anal ultrasound was done pre injury and pre-euthanasia. Tissues were saved for histology and analyzed quantitatively. Two way ANOVA followed by Holm-Sidak test and one way ANOVA followed by the Tukey test were used for data analysis, p < 0.05 was regarded as significant. RESULTS: Posterior anal pressures at the 3 time points were not significantly different in the saline group. In contrast, post-treatment pressures in the 1 SDF-1 group pressures were significantly higher than both pre-injury (p = 0.001) and pre-treatment time points (p = 0.003). At the post-treatment time point, both 1 SDF-1 (p = 0.01) and 2 SDF-1 (p = 0.01) groups had significantly higher mean pressures compared to the saline group. Histology showed distortion of normal anatomy with patchy regeneration in the control group while muscle was more organized in both treatment groups. CONCLUSIONS: Eight weeks after a single or two doses of SDF-1injected into a chronic anal sphincter injury improved resting anal pressures and regenerated muscle in the entire defect. SDF-1 plasmid is effective in treating chronic defects of the anal sphincter in a large animal and could be clinically translated.


Assuntos
Canal Anal , Quimiocina CXCL12 , Canal Anal/fisiologia , Animais , Quimiocina CXCL12/farmacologia , Músculo Liso , Plasmídeos , Regeneração/fisiologia , Suínos , Porco Miniatura
17.
Int Urogynecol J ; 33(7): 1765-1788, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088092

RESUMO

INTRODUCTION AND HYPOTHESIS: Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development. METHODS: We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years. RESULTS: The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications. CONCLUSIONS: Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.


Assuntos
Proteínas da Matriz Extracelular , Prolapso de Órgão Pélvico , Aminoácido Oxirredutases/genética , Animais , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Feminino , Camundongos , Camundongos Knockout , Diafragma da Pelve , Gravidez
18.
Sci Rep ; 11(1): 21591, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732833

RESUMO

The aims of the study were to determine the time-course of urinary incontinence recovery after vaginal distension (VD), elucidate the mechanisms of injury from VD leading to external urethral sphincter (EUS) dysfunction, and assess if transcutaneous electrical stimulation (TENS) of the dorsal nerve of the clitoris facilitates recovery of urinary continence after VD. Rats underwent 4-h VD, 4-h sham VD (SH-VD), VD plus 1-h DNC TENS, and VD plus 1-h sham TENS (SH-TENS). TENS or SH-TENS were applied immediately and at days 2 and 4 post-VD. Micturition behavior, urethral histochemistry and histology, EUS and nerve electrophysiology, and cystometrograms were evaluated. VD induced urine leakage and significantly disrupted EUS fibers and nerve-conduction (VD vs SH-VD group; p < 0.01). Urine leakage disappeared 13 days post-VD (p < 0.001). Structural and functional recovery of EUS neuromuscular circuitry started by day 6 post-VD, but did not fully recover by day 11 post-VD (p > 0.05). TENS significantly decreased the frequency of urine leakage post-VD (days 5-7; p < 0.01). We conclude that rat urinary continence after VD requires 2 weeks to recover, although urethra structure is not fully recovered. TENS facilitated urinary continence recovery after VD. Additional studies are necessary to assess if TENS could be used in postpartum women.


Assuntos
Parto , Estimulação Elétrica Nervosa Transcutânea/métodos , Uretra/patologia , Incontinência Urinária/terapia , Animais , Eletromiografia , Eletrofisiologia , Feminino , Compressão Nervosa , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Incontinência Urinária por Estresse/fisiopatologia , Micção , Vagina/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-34606460

RESUMO

Continuous sacral neuromodulation (SNM) is used to treat overactive bladder, reducing urine leakage and increasing capacity. Conditional SNM applies stimulation in response to changing bladder conditions, and is an opportunity to study neuromodulation effects in various disease states. A key advantage of this approach is saving power consumed by stimulation pulses. This study demonstrated feasibility of automatically applying neuromodulation using a wireless bladder pressure sensor, a real-time control algorithm, and the Medtronic Summit™ RC+S neurostimulation research system. This study tested feasibility of four conditional SNM paradigms over five days in 4 female sheep. Primary outcomes assessed proof of concept of closed-loop system function. While the bladder pressure sensor correlated only weakly to simultaneous catheter-based pressure measurement (correlation 0.26-0.89, median r = 0.52), the sensor and algorithm were accurate enough to automatically trigger SNM appropriately. The neurostimulator executed 98.5% of transmitted stimulation commands with a median latency of 72 ms (n = 1,206), suggesting that rapid decision-making and control is feasible with this platform. On average, bladder capacity increased for continuous SNM and algorithm-controlled paradigms. Some animals responded more strongly to conditional SNM, suggesting that treatment could be individualized. Future research in conditional SNM may elucidate the physiologic underpinnings of differential response and enable clinical translation.


Assuntos
Terapia por Estimulação Elétrica , Bexiga Urinária Hiperativa , Animais , Estudos de Viabilidade , Feminino , Sacro , Ovinos , Resultado do Tratamento , Bexiga Urinária Hiperativa/terapia
20.
Sci Rep ; 11(1): 14369, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257341

RESUMO

Transurethral and suprapubic catheterization have both been used to test urethral function in rats; however, it is unknown whether these methods affect urethral function or if the order of catheterization affects the results. The aim of this cross-over designed experiment was to compare the effects of catheterization methods and order on leak point pressure (LPP) testing. LPP and simultaneous external urethral sphincter electromyography (EUS EMG) were recorded in anesthetized female virgin Sprague-Dawley rats in a cross-over design to test the effects of transurethral and suprapubic catheterization. There was no significant difference in peak bladder pressure during LPP testing whether measured with a transurethral or suprapubic catheter. There was no significant difference in peak bladder pressure between the first and second catheter insertions. However, peak EMG firing rate, as well as peak EMG amplitude and EMG amplitude difference between peak and baseline were significantly higher after the first catheter insertion compared to the second insertion, regardless of the catheter method. Our results suggest that route of catheterization does not alter urethral function, e.g. create a functional partial outlet obstruction. Either catheterization method could be used for LPP and/or EUS EMG testing in rats.


Assuntos
Uretra/fisiologia , Bexiga Urinária/fisiologia , Cateterismo Urinário/métodos , Urodinâmica , Animais , Eletromiografia , Feminino , Pressão , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Micção , Urologia/instrumentação , Urologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA