Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793549

RESUMO

Heavy metal pollution is becoming a worldwide problem affecting pollinators. The massive use of lead (Pb), the most harmful metal for the biosphere, in industries has increased the risk for honey bees. Pb exerts toxicity on living organisms inducing mainly oxidative stress. We assessed the toxicity and sublethal effects of Pb ingestion on protein content, catalase (CAT) activity, fat content and fatty acid (FA) profile of honey bee workers (Apis mellifera L.) under different nutritional conditions during chronic exposure tests. The LD50 was 15.13 ± 6.11 µg Pb2+/bee, similar to other reports. A single oral sublethal dose of 15 µg of Pb2+ affected the survival of bees fed with sugary food for ten days after Pb ingestion while supplementing the diet with bee bread improved Pb tolerance. The highest protein content was found in bees fed with the sugar paste and bee bread diet without Pb. CAT activity tended to decrease in bees of Pb groups independently of diet. Fat content was not affected by the diet type received by bees or Pb ingestion, but the FAs profile varied according to the nutritional quality of the diet. The results highlight that a single sublethal dose of Pb negatively affected the body proteins of bees despite the nutritional condition but did not disturb the FAs profile of workers. Nutrition plays an important role in preventing Pb-induced toxicity in honey bees.


Assuntos
Metais Pesados , Própole , Abelhas , Animais , Chumbo/toxicidade , Antioxidantes , Dieta
2.
J Sci Food Agric ; 101(12): 5082-5088, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570749

RESUMO

BACKGROUND: Kiwifruit is an important horticultural crop all over the world and its development is important in Argentina. This dioecious crop has a short blooming period with nectarless flowers, and its fruit production depends on cross-pollination. Here, we tested whether kiwifruit quality increases by using honeybees exposed to female flowers treated with an artificial fragrance. The three experimental treatments were: A, sprinkled female flowers with 1:1 sugar syrup + Lavandula hybrida extract solution (a new attractant substance especially developed for this study named Lavandin Grosso); B, sprinkled female flowers with 1:1 water + sugar syrup (female flowers with additional sugar syrup reward); C (control; female flowers exposed to honeybees). RESULTS: The results showed a higher number of visits of honeybees to the female flowers sprinkled with the attractant substance, Lavandin Grosso, as well as higher fruit quality (weight, number of seeds, regularity in fruit size). CONCLUSION: Our study demonstrates the potential of fragrance-treated flowers to improve yield production in kiwifruit. © 2021 Society of Chemical Industry.


Assuntos
Actinidia/parasitologia , Abelhas/fisiologia , Frutas/química , Odorantes/análise , Actinidia/química , Actinidia/crescimento & desenvolvimento , Animais , Argentina , Flores/crescimento & desenvolvimento , Flores/parasitologia , Frutas/crescimento & desenvolvimento , Frutas/parasitologia , Polinização , Controle de Qualidade
3.
Insects ; 10(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726686

RESUMO

The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.

4.
Saudi J Biol Sci ; 26(5): 906-912, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31303818

RESUMO

The aim of this work was to compare the antimicrobial activity against Paenibacillus larvae and the antioxidant capacity of two Laurus nobilis L. extracts obtained by different extraction methods. The hydroalcoholic extract was moreover added as supplementary diet to bees in field conditions to test behavioural effects and colony strength. Both laurel extracts were subjected to different phytochemical analysis to identify their bioactive compounds. Antimicrobial activity was analyzed by the minimal inhibitory concentration (MIC) determination by means the agar dilution method. The hydroalcoholic extract (HE) was able to inhibit the bacterial growth of all P. larvae strains, with 580 µg/mL mean value. This better antibacterial activity in relation to the essential oil (EO) could be explained by the presence of some phenolic compounds, such as flavonoids, evidenced by characteristic bands resulting from the Fourier Transform Infrared Spectroscopy (FTIR) analysis. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability and ferric reducing antioxidant power (FRAP) assays. The HE showed the highest antioxidant activity as measured by DPPH, with IC50 values of 257 ±â€¯12 µg/mL. The FRAP assay method showed that the HE was 3-fold more effective reducing agent than the EO. When the bee colonies were supplied with laurel HE in sugar paste an improvement in their general condition was noticed, although neither the hygienic behavior nor the proportions of the breeding cells varied statistically due to the treatment. In conclusion, the inhibition power against P. larvae attributable to the phenolic compounds, the antioxidant capacity of the HE, and the non-lethal effects on adult honey bees on field trials suggest the HE of laurel as a promising substance for control American foulbrood disease.

5.
Parasitol Res ; 113(2): 701-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24288051

RESUMO

A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 µg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) µg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.


Assuntos
Acaricidas/farmacologia , Anti-Infecciosos/farmacologia , Abelhas/microbiologia , Abelhas/parasitologia , Laurus/química , Extratos Vegetais/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nosema/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Paenibacillus/efeitos dos fármacos , Folhas de Planta/química , Varroidae/efeitos dos fármacos
6.
Parasitol Res ; 108(1): 79-86, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20838808

RESUMO

Extracts of indigenous plants from South America have shown a broad spectrum of bioactivities. No-contaminant and natural substances have recently resurged as control treatment options for varroosis in honey bee colonies from Argentina. The aim of this work was to evaluate the biological activity of botanical extracts from Baccharis flabellata and Minthostachys verticillata on Varroa destructor and Apis mellifera. The acaricidal and insecticidal activities were assessed by the spraying application method. Both ethanolic extracts showed high levels of toxicity against the mites and were harmless to their host, A. mellifera. During the attractive-repellent test, the olfactory stimulus evoked for the extract from B. flabellata resulted as a repellent for mites. The aromatic stimulus of these extracts would be strong enough to cause disturbance on the behavior of V. destructor. Thus, the repellent effect of these substances plus the toxicity on mites postulate these botanical extracts like promising natural compound to be incorporated for the control of varroosis.


Assuntos
Acaricidas/farmacologia , Baccharis/química , Repelentes de Insetos/farmacologia , Lamiaceae/química , Extratos Vegetais/farmacologia , Varroidae/efeitos dos fármacos , Acaricidas/isolamento & purificação , Acaricidas/toxicidade , Animais , Argentina , Abelhas/efeitos dos fármacos , Feminino , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Análise de Sobrevida
7.
Parasitol Res ; 107(1): 31-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20336318

RESUMO

Varroa destructor is an ectoparasitic mite that affects colonies of honey bee Apis mellifera worldwide. In the last years, substances of botanical origin have emerged as natural alternative acaricides to diminish the population levels of the mite. In the present work, the bioactivity of propolis from different geographical locations of Pampean region from Argentina on V. destructor was evaluated. Fourteen propolis samples were organoleptic and physicochemically characterized and, by means topical applications, their activity was tested on mites. All propolis had a homogeneous composition and the bioactivity levels against mites were comparable among the different propolis samples. The percentage of mites killed by the treatments ranged between 60.5% and 90% after 30 s of exposure. Thus, V. destructor was highly susceptible to propolis. Moreover, the mites remained anesthetized during the first hours after topical treatment. The results suggest that propolis from Argentinean pampas could be incorporated in honey bee colonies as acaricidal treatment by spraying.


Assuntos
Acaricidas/farmacologia , Própole/farmacologia , Varroidae/efeitos dos fármacos , Animais , Argentina , Geografia , Análise de Sobrevida
8.
Exp Appl Acarol ; 50(3): 269-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19768560

RESUMO

We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Parasita , Varroidae/fisiologia , Animais , Feminino , Comportamento de Nidação , Densidade Demográfica , Reprodução
9.
Parasitol Res ; 106(1): 145-52, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19795133

RESUMO

Varroa destructor is an external parasitic mite that is a serious pest of honeybees and has caused severe losses of colonies worldwide. One of the feasible alternative treatments being used for their control is essential oils. The aim of this work was to evaluate the bioactivity of some essential oils on V. destructor and Apis mellifera in relation with their chemical composition and physicochemical properties. Lavender, lavendin and laurel essential oils showed linalool as main compound in their composition. 1,8-Cineole was also present as a predominant component in the laurel essential oil. However, thyme oil was characterized by a high concentration of thymol. Mites and bees toxicity was tested by means of complete exposure method. For mites, LC(50) values for laurel, lavender and lavendin essential oil did not show significant variation throughout all observation times. However, the LC(50) values for thyme oil at 48 and 72 h were lower than at 24 h. Bee mortality was evident only in treatment with thyme oil. At 48 and 72 h, lavender essential oil presented better selectivity indexes. In this research, all essential oils caused mite mortality without severe harmful effects on adult bees. The simultaneous evaluation of the physicochemical analysis of the essential oils, the characterization of the dosage response relationships among them, and the mortality effects on mite and bees, give us the possibility to obtain comparative results for future research in Varroa control.


Assuntos
Acaricidas/farmacologia , Abelhas/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Varroidae/efeitos dos fármacos , Animais , Lavandula/química , Dose Letal Mediana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Análise de Sobrevida , Thymus (Planta)/química , Fatores de Tempo
10.
Exp Appl Acarol ; 47(4): 317-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19009360

RESUMO

In Argentina, studies on Varroa destructor resistance to coumaphos are still unknown. At present, high infestation levels of V. destructor are being detected in colonies of Apis mellifera after treatment with this acaricide. The aim of the present study was to determine the LC50 of coumaphos in V. destructor from four apiaries with high mite density after treatment with coumaphos. The LC50's were 112, 319, 127 and 133 microg/Petri dish for mites from the four apiaries. Significant LC50 differences were detected between resistant and susceptible mites. LC50 increased 197-559-fold when compared to the corresponding baseline, suggesting the development of resistance. These results are the first report of resistance to coumaphos in V. destructor in Argentina.


Assuntos
Cumafos/toxicidade , Ácaros/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Argentina , Abelhas/parasitologia , Resistência a Medicamentos , Dose Letal Mediana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA