Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Respir Res ; 25(1): 235, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844967

RESUMO

BACKGROUND: Abnormal remodeling of distal pulmonary arteries in patients with pulmonary arterial hypertension (PAH) leads to progressively increased pulmonary vascular resistance, followed by right ventricular hypertrophy and failure. Despite considerable advancements in PAH treatment prognosis remains poor. We aim to evaluate the potential for using the cytokine resistin as a genetic and biological marker for disease severity and survival in a large cohort of patients with PAH. METHODS: Biospecimens, clinical, and genetic data for 1121 adults with PAH, including 808 with idiopathic PAH (IPAH) and 313 with scleroderma-associated PAH (SSc-PAH), were obtained from a national repository. Serum resistin levels were measured by ELISA, and associations between resistin levels, clinical variables, and single nucleotide polymorphism genotypes were examined with multivariable regression models. Machine-learning (ML) algorithms were applied to develop and compare risk models for mortality prediction. RESULTS: Resistin levels were significantly higher in all PAH samples and PAH subtype (IPAH and SSc-PAH) samples than in controls (P < .0001) and had significant discriminative abilities (AUCs of 0.84, 0.82, and 0.91, respectively; P < .001). High resistin levels (above 4.54 ng/mL) in PAH patients were associated with older age (P = .001), shorter 6-min walk distance (P = .001), and reduced cardiac performance (cardiac index, P = .016). Interestingly, mutant carriers of either rs3219175 or rs3745367 had higher resistin levels (adjusted P = .0001). High resistin levels in PAH patients were also associated with increased risk of death (hazard ratio: 2.6; 95% CI: 1.27-5.33; P < .0087). Comparisons of ML-derived survival models confirmed satisfactory prognostic value of the random forest model (AUC = 0.70, 95% CI: 0.62-0.79) for PAH. CONCLUSIONS: This work establishes the importance of resistin in the pathobiology of human PAH. In line with its function in rodent models, serum resistin represents a novel biomarker for PAH prognostication and may indicate a new therapeutic avenue. ML-derived survival models highlighted the importance of including resistin levels to improve performance. Future studies are needed to develop multi-marker assays that improve noninvasive risk stratification.


Assuntos
Resistina , Índice de Gravidade de Doença , Humanos , Masculino , Feminino , Resistina/sangue , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Valor Preditivo dos Testes , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/mortalidade , Idoso , Estudos de Coortes , Polimorfismo de Nucleotídeo Único , Taxa de Sobrevida/tendências , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/mortalidade , Hipertensão Pulmonar/genética
2.
Eur Respir J ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843915

RESUMO

BACKGROUND: Pulmonary arterial hypertension is characterized by poor exercise tolerance. The contribution of right ventricular (RV) diastolic function to the augmentation of cardiac output during exercise is not known. This study leverages pressure-volume (p-V) loop analysis to characterize the impact of RV diastology on poor flow augmentation during exercise in PAH. METHODS: RV p-V loops were measured in 41 PAH patients at rest and during supine bike exercise. Patients were stratified by median change in cardiac index during exercise into two groups: high and low CI reserve. Indices of diastolic function (end-diastolic elastance, Eed) and ventricular interdependence (left ventricular transmural pressure, LVTMP) were compared at matched exercise stages. RESULTS: Compared to patients with high CI reserve, those with low reserve exhibited lower exercise stroke volume (36 versus 49 ml·m-2, p=0.0001), with higher associated exercise afterload (Ea 1.76 versus 0.90 mmHg·mL-1, p<0.0001), RV stiffness (Eed 0.68 versus 0.26 mmHg·mL-1, p=0.003), and right-sided pressures (RA 14 versus 8 mmHg, p=0.002). Higher right-sided pressures led to significantly lower LV filling among the low CI reserve subjects (LVTMP -4.6 versus 3.2 mmHg, p=0.0001). Interestingly, low exercise flow reserve correlated significantly with high afterload and RV stiffness, but not with RV contractility nor RV-PA coupling. CONCLUSIONS: Patients with poor exercise CI reserve exhibit poor exercise RV afterload, stiffness, and right-sided filling pressures that depress LV filling and stroke work. High afterload and RV stiffness were the best correlates to low flow reserve in PAH. Exercise unmasked significant pathophysiologic PAH differences unapparent at rest.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38861354

RESUMO

Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII alpha 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). Importantly, elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/Chronic hypoxic (SuHx) rat pulmonary hypertension (PH) model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricular (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance (CMR) imaging and advanced hemodynamic assessments with pressure-volume (PV) loops in patients with PAH to assess RV-pulmonary arterial (PA) coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index (VMI) were positively associated with ES while RV ejection fraction and RV-PA coupling were inversely associated with ES levels. Our animal data demonstrates that the development of PH is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared to the left ventricle (LV) and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increase early in disease development in the RV and implicate COL18A1/ES in pathologic RV dysfunction in PAH.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38651694

RESUMO

We sought to investigate differential metabolism in patients with systemic sclerosis (SSc) who develop pulmonary arterial hypertension (PAH) versus those who do not, as a method of identifying potential disease biomarkers. In a nested case-control design, serum metabolites were assayed in SSc subjects who developed right heart catheterization-confirmed PAH (n=22) while under surveillance in a longitudinal cohort from Johns Hopkins, then compared to metabolites assayed in matched SSc patients who did not develop PAH (n=22). Serum samples were collected at "proximate" (within 12 months) and "distant" (within 1-5 years) time points relative to PAH diagnosis. Metabolites were identified using liquid chromatography-mass spectroscopy (LC-MS). An LC-MS dataset from SSc subjects with either mildly elevated pulmonary pressures or overt PAH from the University of Michigan was compared. Differentially abundant metabolites were tested as predictors of PAH in two additional validation SSc cohorts. Long-chain fatty acid metabolism (LCFA) consistently differed in SSc-PAH versus SSc without PH. LCFA metabolites discriminated SSc-PAH patients with mildly elevated pressures in the Michigan cohort and predicted SSc-PAH up to two years prior to clinical diagnosis in the Hopkins cohort. Acylcholines containing LCFA residues and linoleic acid metabolites were most important for discriminating SSc-PAH. Combinations of acylcholines and linoleic acid metabolites provided good discrimination of SSc-PAH across cohorts. Aberrant lipid metabolism is observed throughout the evolution of PAH in SSc. Lipidomic signatures of abnormal LCFA metabolism distinguish SSc-PAH patients from those without PH, including prior to clinical diagnosis and in mild disease.

5.
Pulm Circ ; 13(4): e12298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37859803

RESUMO

In this 4D flow cardiovascular magnetic resonance (CMR) study, vortical blood flow in the main pulmonary artery (MPA) is quantified using circulation (á´¦), a metric used in fluid dynamics to quantify the rotational components of flow. Circulation (á´¦) is a 4D flow CMR metric that quantifies the vortical blood flow pattern in the MPA of patients with pulmonary hypertension (PH), distinguishes them from healthy controls, and shows high correlation with invasive markers of PH severity.

6.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786941

RESUMO

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/complicações , Cinurenina , Triptofano , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar , Biomarcadores
7.
Pulm Circ ; 13(3): e12260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404901

RESUMO

Although PAH is partially attributed to disordered metabolism, previous human studies have mostly examined circulating metabolites at a single time point, potentially overlooking crucial disease biology. Current knowledge gaps include an understanding of temporal changes that occur within and across relevant tissues, and whether observed metabolic changes might contribute to disease pathobiology. We utilized targeted tissue metabolomics in the Sugen hypoxia (SuHx) rodent model to investigate tissue-specific metabolic relationships with pulmonary hypertensive features over time using regression modeling and time-series analysis. Our hypotheses were that some metabolic changes would precede phenotypic changes, and that examining metabolic interactions across heart, lung, and liver tissues would yield insight into interconnected metabolic mechanisms. To support the relevance of our findings, we sought to establish links between SuHx tissue metabolomics and human PAH -omics data using bioinformatic predictions. Metabolic differences between and within tissue types were evident by Day 7 postinduction, demonstrating distinct tissue-specific metabolism in experimental pulmonary hypertension. Various metabolites demonstrated significant tissue-specific associations with hemodynamics and RV remodeling. Individual metabolite profiles were dynamic, and some metabolic shifts temporally preceded the emergence of overt pulmonary hypertension and RV remodeling. Metabolic interactions were observed such that abundance of several liver metabolites modulated lung and RV metabolite-phenotype relationships. Taken all together, regression analyses, pathway analyses and time-series analyses implicated aspartate and glutamate signaling and transport, glycine homeostasis, lung nucleotide abundance, and oxidative stress as relevant to early PAH pathobiology. These findings offer valuable insights into potential targets for early intervention in PAH.

8.
Arthritis Rheumatol ; 75(12): 2240-2251, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37335853

RESUMO

OBJECTIVE: Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) experience worse survival and derive less benefit from pulmonary vasodilator therapies than patients with idiopathic PAH (IPAH). We sought to identify differential metabolism in patients with CTD-PAH versus patients with IPAH that might underlie these observed clinical differences. METHODS: Adult participants with CTD-PAH (n = 141) and IPAH (n = 165) from the Pulmonary Vascular Disease Phenomics (PVDOMICS) study were included. Detailed clinical phenotyping was performed at cohort enrollment, including broad-based global metabolomic profiling of plasma samples. Participants were followed prospectively for ascertainment of outcomes. Supervised and unsupervised machine learning algorithms and regression models were used to compare CTD-PAH versus IPAH metabolomic profiles and to measure metabolite-phenotype associations and interactions. Gradients across the pulmonary circulation were assessed using paired mixed venous and wedged samples in a subset of 115 participants. RESULTS: Metabolomic profiles distinguished CTD-PAH from IPAH, with patients with CTD-PAH demonstrating aberrant lipid metabolism with lower circulating levels of sex steroid hormones and higher free fatty acids (FAs) and FA intermediates. Acylcholines were taken up by the right ventricular-pulmonary vascular (RV-PV) circulation, particularly in CTD-PAH, while free FAs and acylcarnitines were released. In both PAH subtypes, dysregulated lipid metabolites, among others, were associated with hemodynamic and RV measurements and with transplant-free survival. CONCLUSIONS: CTD-PAH is characterized by aberrant lipid metabolism that may signal shifted metabolic substrate utilization. Abnormalities in RV-PV FA metabolism may imply a reduced capacity for mitochondrial beta oxidation within the diseased pulmonary circulation.


Assuntos
Doenças do Tecido Conjuntivo , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Adulto , Humanos , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/complicações , Fenômica , Vasodilatadores/uso terapêutico , Hipertensão Arterial Pulmonar/complicações , Doenças do Tecido Conjuntivo/complicações
9.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L836-L848, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070742

RESUMO

Right ventricular (RV) adaptation is the principal determinant of outcomes in pulmonary arterial hypertension (PAH), however, RV function is challenging to assess. RV responses to hemodynamic stressors are particularly difficult to interrogate without invasive testing. This study sought to identify metabolomic markers of in vivo right ventricular function and exercise performance in PAH. Consecutive subjects with PAH (n = 23) underwent rest and exercise right heart catheterization with multibeat pressure volume loop analysis. Pulmonary arterial blood was collected at rest and during exercise. Mass spectrometry-based targeted metabolomics were performed, and metabolic associations with hemodynamics and comprehensive measures of RV function were determined using sparse partial least squares regression. Metabolite profiles were compared with N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) measurements for accuracy in modeling ventriculo-arterial parameters. Thirteen metabolites changed in abundance with exercise, including metabolites reflecting increased arginine bioavailability, precursors of catecholamine and nucleotide synthesis, and branched-chain amino acids. Higher resting arginine bioavailability predicted more favorable exercise hemodynamics and pressure-flow relationships. Subjects with more severe PAH augmented arginine bioavailability with exercise to a greater extent than subjects with less severe PAH. We identified relationships between kynurenine pathway metabolism and impaired ventriculo-arterial coupling, worse RV diastolic function, lower RV contractility, diminished RV contractility with exercise, and RV dilation with exercise. Metabolite profiles outperformed NT-proBNP in modeling RV contractility, diastolic function, and exercise performance. Specific metabolite profiles correspond to RV functional measurements only obtainable via invasive pressure-volume loop analysis and predict RV responses to exercise. Metabolic profiling may inform discovery of RV functional biomarkers.NEW & NOTEWORTHY In this cohort of patients with pulmonary arterial hypertension (PAH), we investigate metabolomic associations with comprehensive right ventricular (RV) functional measurements derived from multibeat RV pressure-volume loop analysis. Our results show that tryptophan metabolism, particularly the kynurenine pathway, is linked to intrinsic RV function and PAH pathobiology. Findings also highlight the importance of arginine bioavailability in the cardiopulmonary system's response to exercise stress. Metabolite profiles selected via unbiased analysis outperformed N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) in predicting load-independent measures of RV function at rest and cardiopulmonary system performance under stress. Overall, this work suggests the potential for select metabolites to function as disease-specific biomarkers, offers insights into PAH pathobiology, and informs discovery of potentially targetable RV-centric pathways.


Assuntos
Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Peptídeo Natriurético Encefálico , Função Ventricular Direita/fisiologia , Cinurenina , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Arginina
10.
Am J Respir Crit Care Med ; 207(3): 312-322, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173815

RESUMO

Rationale: To date, it remains unclear whether recent changes in the management of patients with systemic sclerosis-associated pulmonary hypertension (SSc-PH) have improved survival. Objectives: To describe a cohort of patients with SSc-PH and compare their characteristics and survival between the last two decades. Methods: Patients with SSc-PH prospectively enrolled in the Johns Hopkins Pulmonary Hypertension Center Registry were grouped into two cohorts based on the date of diagnostic right heart catheterization: cohort A included patients whose disease was diagnosed between 1999 and 2010, and cohort B included those whose disease was diagnosed between 2010 and 2021. Patients' characteristics were compared between the two cohorts. Measurements and Main Results: Of 504 patients with SSc-PH distributed almost equally between the two cohorts, 308 (61%) had World Symposium on Pulmonary Hypertension group 1, 43 (9%) had group 2, and 151 (30%) had group 3 disease. Patients with group 1 disease in cohort B had significantly better clinical and hemodynamic characteristics at diagnosis, were more likely to receive upfront combination pulmonary arterial hypertension therapy, and had a nearly 4-year increase in median transplant-free survival in univariable analysis than those in cohort A (P < 0.01). Improved transplant-free survival was still observed after adjusting for patients' baseline characteristics. In contrast, for group 2 or 3 patients with SSc-PH, there were no differences in baseline clinical, hemodynamic, or survival characteristics between the two cohorts. Conclusions: This is the largest single-center study that compares clinical characteristics of patients with SSc-PH between the last two decades. Transplant-free survival has improved significantly for those with group 1 disease over the last decade, possibly secondary to earlier detection and better therapeutic management. Conversely, those with group 2 or 3 disease continue to have dismal prognosis.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Humanos , Hipertensão Arterial Pulmonar/terapia , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/diagnóstico , Escleroderma Sistêmico/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Sistema de Registros
11.
medRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38234783

RESUMO

Background: Mutations are found in 10-20% of idiopathic PAH (IPAH) patients, but none are consistently identified in connective tissue disease-associated PAH (APAH), which accounts for ∼45% of PAH cases. TET2 mutations, a cause of clonal hematopoiesis of indeterminant potential (CHIP), predispose to an inflammatory type of PAH. We now examine mutations in another CHIP gene, DNMT3A , in PAH. Methods: We assessed DNMT3A mutation prevalence in PAH Biobank subjects as compared with controls, first using whole exome sequencing (WES)-derived CHIP calls in 1832 PAH Biobank patients versus 7509 age-and sex-matched gnomAD controls. We then performed deep, targeted panel sequencing of CHIP genes on a subset of 710 PAH Biobank patients and compared the prevalence of DNMT3A mutations therein to an independent pooled control cohort (N = 3645). In another cohort of 80 PAH patients and 41 controls, DNMT3A mRNA expression was studied in peripheral blood mononuclear cells (PBMCs). Finally, we evaluated the development of PAH in a conditional, hematopoietic, Dnmt3a knockout mouse model. Results: DNMT3A mutations were more frequent in PAH cases versus control subjects in the WES dataset (OR 2.60, 95% CI: 1.71-4.27). Among PAH patients, 33 had DNMT3A variants, most of whom had APAH (21/33). While 21/33 had somatic mutations (female:male 17:4), germline variants occurred in 12/33 (female:male 11:1). Hemodynamics were comparable with and without DNMT3A mutations (mPAP=58±21 vs. 52±18 mmHg); however, patients with DNMT3A mutations were unresponsive to acute vasodilator testing. Targeted panel sequencing identified that 14.6% of PAH patients had CHIP mutations (104/710), with DNMT3A accounting for 49/104. There was a significant association between all CHIP mutations and PAH in analyses adjusted for age and sex (OR 1.40, 95% CI: 1.09-1.80), though DNMT3A CHIP alone was not significantly enriched (OR:1.15, 0.82-1.61). DNMT3A expression was reduced in patient-derived versus control PAH-PBMCs. Spontaneous PAH developed in Dnmt3a -/- mice, and it was exacerbated by 3 weeks of hypoxia. Dnmt3a -/- mice had increased lung macrophages and elevated plasma IL-13. The IL-1ß antibody canakinumab attenuated PAH in Dnmt3a -/- mice. Conclusions: Germline and acquired DNMT3A variants predispose to PAH in humans. DNMT3A mRNA expression is reduced in human PAH PBMCs. Hematopoietic depletion of Dnmt3a causes inflammatory PAH in mice. DNMT3A is a novel APAH gene and may be a biomarker and therapeutic target.

12.
J Clin Med ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887800

RESUMO

Background: Given the morbidity and mortality associated with pulmonary arterial hypertension (PAH), risk stratification approaches that guide therapeutic management have been previously employed. However, most patients remain in the intermediate-risk category despite initial therapy. Herein, we sought to determine whether echocardiographic parameters could improve the risk stratification of intermediate-risk patients. Methods: Prevalent PAH patients previously enrolled in observational studies at 3 pulmonary hypertension centers were included in this study. A validated PAH risk stratification approach was used to stratify patients into low-, intermediate-, and high-risk groups. Right ventricular echocardiographic parameters were used to further stratify intermediate-risk patients into intermediate-low- and intermediate-high-risk groups based on transplant-free survival. Results: From a total of 146 patients included in our study, 38 patients died over a median follow-up of 2.5 years. Patients with intermediate-/high-risk had worse echocardiographic parameters. Tricuspid annular plane systolic excursion (TAPSE) and the degree of tricuspid regurgitation (TR) were highly associated with survival (p < 0.01, p = 0.04, respectively) and were subsequently used to further stratify intermediate-risk patients. Among intermediate-risk patients, survival was worse for patients with TAPSE < 19 mm compared to those with TAPSE ≥ 19 mm (estimated one-year survival 74% vs. 96%, p < 0.01) and for patients with moderate/severe TR compared to those with no/trace/mild TR (estimated one-year survival 70% vs. 93%, p < 0.01). Furthermore, among intermediate-risk patients, those with both TAPSE < 19 mm and moderate/severe TR had an estimated one-year survival (56%) similar to that of high-risk patients (56%), and those with both TAPSE ≥ 19 mm and no/trace/mild TR had an estimated one-year survival (97%) similar to that of low-risk patients (95%). Conclusions: Echocardiography, a routinely performed, non-invasive imaging modality, plays a pivotal role in discriminating distinct survival phenotypes among prevalent intermediate-risk PAH patients using TAPSE and degree of TR. This can potentially help guide subsequent therapy.

14.
ERJ Open Res ; 8(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35769420

RESUMO

Variation around the COL18A1 gene, which encodes the angiostatic peptide endostatin, may influence disease heterogeneity in pulmonary arterial hypertension https://bit.ly/3shXrNR.

15.
Pulm Circ ; 12(1): e12005, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506079

RESUMO

Cardiac magnetic resonance (CMR) measures of right ventricular (RV) mass, volumes, and function have diagnostic and prognostic value in pulmonary arterial hypertension (PAH). We hypothesized that RV mass-based metrics would discriminate incident PAH as redefined by the lower mean pulmonary arterial pressure (mPAP) threshold of >20 mmHg at the Sixth World Symposium on Pulmonary Hypertension (6th WSPH). Eighty-nine subjects with suspected PAH underwent CMR imaging, including 64 subjects with systemic sclerosis (SSc). CMR metrics, including RV and left ventricular (LV) mass, were measured. All subjects underwent right heart catheterization (RHC) for assessment of hemodynamics within 48 h of CMR. Using generalized linear models, associations between CMR metrics and PAH were assessed, the best subset of CMR variables for predicting PAH were identified, and relationships between mass-based metrics, hemodynamics, and other predictive CMR metrics were examined. Fifty-nine subjects met 6th WSPH criteria for PAH. RV mass metrics, including ventricular mass index (VMI), demonstrated the greatest magnitude difference between subjects with versus without PAH. Overall and in SSc, VMI and RV mass measured by CMR were among the most predictive variables discriminating PAH at RHC, with areas under the receiver operating characteristic curve 0.86 and 0.83. respectively. VMI increased linearly with pulmonary vascular resistance and with mPAP in PAH, including in lower ranges of mPAP associated with mild PAH. VMI ≥ 0.37 yielded a positive predictive value of 90% for discriminating PAH. RV mass metrics measured by CMR, including VMI, discriminate incident, treatment-naïve PAH as defined by 6th WSPH criteria.

16.
ERJ Open Res ; 7(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34651041

RESUMO

Currently available noninvasive markers for assessing disease severity and mortality risk in pulmonary arterial hypertension (PAH) are unrelated to fundamental disease biology. Endostatin, an angiostatic peptide known to inhibit pulmonary artery endothelial cell migration, proliferation and survival in vitro, has been linked to adverse haemodynamics and shortened survival in small PAH cohorts. This observational cohort study sought to assess: 1) the prognostic performance of circulating endostatin levels in a large, multicentre PAH cohort; and 2) the added value gained by incorporating endostatin into existing PAH risk prediction models. Endostatin ELISAs were performed on enrolment samples collected from 2017 PAH subjects with detailed clinical data, including survival times. Endostatin associations with clinical variables, including survival, were examined using multivariable regression and Cox proportional hazards models. Extended survival models including endostatin were compared to null models based on the REVEAL risk prediction tool and European Society of Cardiology/European Respiratory Society (ESC/ERS) low-risk criteria using likelihood ratio tests, Akaike and Bayesian information criteria and C-statistics. Higher endostatin was associated with higher right atrial pressure, mean pulmonary arterial pressure and pulmonary vascular resistance, and with shorter 6-min walk distance (p<0.01). Mortality risk doubled for each log higher endostatin (hazard ratio 2.3, 95% CI 1.6-3.4, p<0.001). Endostatin remained an independent predictor of survival when incorporated into existing risk prediction models. Adding endostatin to REVEAL-based and ESC/ERS criteria-based risk assessment strategies improved mortality risk prediction. Endostatin is a robust, independent predictor of mortality in PAH. Adding endostatin to existing PAH risk prediction strategies improves PAH risk assessment.

17.
J Am Heart Assoc ; 10(20): e021409, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34622662

RESUMO

Background Endostatin, an angiogenic inhibitor, is associated with worse pulmonary arterial hypertension (PAH) outcomes in adults and poor lung growth in children. This study sought to assess whether endostatin is associated with disease severity and outcomes in pediatric PAH. Methods and Results Serum endostatin was measured in cross-sectional (N=160) and longitudinal cohorts (N=64) of pediatric subjects with PAH, healthy pediatric controls and pediatric controls with congenital heart disease (CHD) (N=54, N=15), and adults with CHD associated PAH (APAH-CHD, N=185). Outcomes, assessed by regression and Kaplan-Meier analysis, included hemodynamics, change in endostatin over time, and transplant-free survival. Endostatin secretion was evaluated in pulmonary artery endothelial and smooth muscle cells. Endostatin was higher in those with PAH compared with healthy controls and controls with CHD and was highest in those with APAH-CHD. In APAH-CHD, endostatin was associated with a shorter 6-minute walk distance and increased mean right atrial pressure. Over time, endostatin was associated with higher pulmonary artery pressure and pulmonary vascular resistance index, right ventricular dilation, and dysfunction. Endostatin decreased with improved hemodynamics over time. Endostatin was associated with worse transplant-free survival. Addition of endostatin to an NT-proBNP (N-terminal pro-B-type natriuretic peptide) based survival analysis improved risk stratification, reclassifying subjects with adverse outcomes. Endostatin was secreted primarily by pulmonary artery endothelial cells. Conclusions Endostatin is associated with disease severity, disease improvement, and worse survival in APAH-CHD. Endostatin with NT-proBNP improves risk stratification, better predicting adverse outcomes. The association of elevated endostatin with shunt lesions suggests that endostatin could be driven by both pulmonary artery flow and pressure. Endostatin could be studied as a noninvasive prognostic marker, particularly in APAH-CHD.


Assuntos
Proteínas Angiostáticas , Cardiopatias Congênitas , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Biomarcadores , Criança , Estudos Transversais , Endostatinas , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Humanos , Hipertensão Pulmonar/diagnóstico
18.
Pulm Circ ; 11(4): 20458940211032529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603686

RESUMO

Right ventricular function has prognostic significance in patients with pulmonary hypertension. We evaluated whether cardiac magnetic resonance-derived strain and strain rate parameters could reliably reflect right ventricular systolic and diastolic function in precapillary pulmonary hypertension. End-systolic elastance and the time constant of right ventricular relaxation tau, both derived from invasive high-fidelity micromanometer catheter measurements, were used as gold standards for assessing systolic and diastolic right ventricular function, respectively. Nineteen consecutive precapillary pulmonary hypertension patients underwent cardiac magnetic resonance and right heart catheterization prospectively. Cardiac magnetic resonance data were compared with those of 19 control subjects. In pulmonary hypertension patients, associations between strain- and strain rate-related parameters and invasive hemodynamic parameters were evaluated. Longitudinal peak systolic strain, strain rate, and early diastolic strain rate were lower in PAH patients than in controls; peak atrial-diastolic strain rate was higher in pulmonary hypertension patients. Similarly, circumferential peak systolic strain rate was lower and peak atrial-diastolic strain rate was higher in pulmonary hypertension. In pulmonary hypertension, no correlations existed between cardiac magnetic resonance-derived and hemodynamically derived measures of systolic right ventricular function. Regarding diastolic parameters, tau was significantly correlated with peak longitudinal atrial-diastolic strain rate (r = -0.61), deceleration time (r = 0.75), longitudinal systolic to diastolic time ratio (r = 0.59), early diastolic strain rate (r = -0.5), circumferential peak atrial-diastolic strain rate (r = -0.52), and deceleration time (r = 0.62). Strain analysis of the right ventricular diastolic phase is a reliable non-invasive method for detecting right ventricular diastolic dysfunction in PAH.

19.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34291108

RESUMO

RATIONALE: Pulmonary hypertension (PH) is associated with significant perioperative morbidity and mortality. We hypothesised that pulmonary arterial hypertension (PAH) composite risk assessment scores could estimate perioperative risk for PH patients when adjusted for inherent procedural risk. METHODS: We identified patients in the Johns Hopkins PH Center Registry that had noncardiac surgery (including endoscopies) between September 2015 and January 2020. We collected information on preoperative patient-level and procedural variables and used logistic regression to evaluate associations with a composite outcome of death within 30 days or serious postoperative complication. We generated composite patient-level risk assessment scores for each subject and used logistic regression to estimate the association with adverse surgical outcomes. We adjusted multivariable models for inherent procedural risk of major cardiovascular events and used these models to generate a numerical PH perioperative risk (PHPR) score. RESULTS: Among 150 subjects, 19 (12.7%) reached the primary outcome, including 7 deaths (4.7%). Individual patient-level and procedural variables were associated with the primary outcome (all p<0.05). A composite patient-level risk assessment score built on three noninvasive parameters was strongly associated with reduced risk for poor outcomes (OR=0.4, p=0.03). This association was strengthened after adjusting the model for procedural risk. A PHPR score derived from the multivariable model stratified patients into low (0%), intermediate (≤10%), or high (>10%) risk of reaching the primary outcome. CONCLUSION: Composite PAH risk assessment scores can predict perioperative risk for PH patients after accounting for inherent procedural risk. Validation of the PHPR score in a multicentre, prospective cohort is warranted.

20.
Am J Respir Cell Mol Biol ; 65(3): 245-258, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129804

RESUMO

The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.


Assuntos
Membrana Basal/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipertensão Pulmonar/metabolismo , Remodelação Vascular , Remodelação Ventricular , Animais , Membrana Basal/patologia , Proliferação de Células , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hipertensão Pulmonar/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA