Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Nitrogênio , Oxigênio , Plâncton
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001604

RESUMO

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight. The model is forced by large-scale climatic drivers and a reconstruction of local inputs via rivers, wastewater outfalls, and atmospheric deposition; it captures the fine scales of ocean circulation along the shelf; and it is validated against a large collection of physical and biogeochemical observations. Local land-based and atmospheric inputs, enhanced by anthropogenic sources, drive a 79% increase in phytoplankton biomass, a 23% increase in primary production, and a nearly 44% increase in subsurface respiration rates along the coast in summer, reshaping the biogeochemistry of the Southern California Bight. Seasonal reductions in subsurface oxygen, pH, and aragonite saturation state, by up to 50 mmol m-3, 0.09, and 0.47, respectively, rival or exceed the global open-ocean oxygen loss and acidification since the preindustrial period. The biological effects of these changes on local fisheries, proliferation of harmful algal blooms, water clarity, and submerged aquatic vegetation have yet to be fully explored.


Assuntos
Carbono/metabolismo , Ecossistema , Eutrofização , Fitoplâncton/fisiologia , Pesqueiros , Humanos , Oceanos e Mares , Oxigênio/metabolismo , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA