RESUMO
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Aptidão Genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genéticaRESUMO
Gene duplication is common across the tree of life, including yeast and humans, and contributes to genomic robustness. In this study, we examined changes in the subcellular localization and abundance of proteins in response to the deletion of their paralogs originating from the whole-genome duplication event, which is a largely unexplored mechanism of functional divergence. We performed a systematic single-cell imaging analysis of protein dynamics and screened subcellular redistribution of proteins, capturing their localization and abundance changes, providing insight into forces determining paralog retention. Paralogs showed dependency, whereby proteins required their paralog to maintain their native abundance or localization, more often than compensation. Network feature analysis suggested the importance of functional redundancy and rewiring of protein and genetic interactions underlying redistribution response of paralogs. Translation of non-canonical protein isoform emerged as a novel compensatory mechanism. This study provides new insights into paralog retention and evolutionary forces that shape genomes.
RESUMO
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
RESUMO
Deep mutational scanning (DMS) generates mutants of a protein of interest in a comprehensive manner. CRISPR-Cas9 technology enables large-scale genome editing with high efficiency. Using both DMS and CRISPR-Cas9 therefore allows us to investigate the effects of thousands of mutations inserted directly in the genome. Combined with protein-fragment complementation assay (PCA), which enables the quantitative measurement of protein-protein interactions (PPIs) in vivo, these methods allow for the systematic assessment of the effects of mutations on PPIs in living cells. Here, we describe a method leveraging DMS, CRISPR-Cas9, and PCA to study the effect of point mutations on PPIs mediated by protein domains in yeast.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Mutação , Mutação PuntualRESUMO
Cancer treatment strategies include exploiting genetic vulnerabilities offered by synthetic lethal (SL) interactions between paralogs. In this issue of Cell Systems, De Kegel et al. (2021) apply a machine learning approach to predict robust SL paralogs in the human genome, highlighting genome evolutionary features as key predictors.
Assuntos
Neoplasias , Evolução Molecular , Genoma Humano/genética , Humanos , Aprendizado de Máquina , Neoplasias/genéticaRESUMO
Protein-protein interactions (PPIs) between modular binding domains and their target peptide motifs are thought to largely depend on the intrinsic binding specificities of the domains. The large family of SRC Homology 3 (SH3) domains contribute to cellular processes via their ability to support such PPIs. While the intrinsic binding specificities of SH3 domains have been studied in vitro, whether each domain is necessary and sufficient to define PPI specificity in vivo is largely unknown. Here, by combining deletion, mutation, swapping and shuffling of SH3 domains and measurements of their impact on protein interactions in yeast, we find that most SH3s do not dictate PPI specificity independently from their host protein in vivo. We show that the identity of the host protein and the position of the SH3 domains within their host are critical for PPI specificity, for cellular functions and for key biophysical processes such as phase separation. Our work demonstrates the importance of the interplay between a modular PPI domain such as SH3 and its host protein in establishing specificity to wire PPI networks. These findings will aid understanding how protein networks are rewired during evolution and in the context of mutation-driven diseases such as cancer.
Assuntos
Mapas de Interação de Proteínas , Proteínas/química , Domínios de Homologia de src , Células HEK293 , Humanos , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Domínios de Homologia de src/genéticaRESUMO
Hybrids between species often show extreme phenotypes, including some that take place at the molecular level. In this study, we investigated the phenotypes of an interspecies diploid hybrid in terms of protein-protein interactions inferred from protein correlation profiling. We used two yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum, which are interfertile, but yet have proteins diverged enough to be differentiated using mass spectrometry. Most of the protein-protein interactions are similar between hybrid and parents, and are consistent with the assembly of chimeric complexes, which we validated using an orthogonal approach for the prefoldin complex. We also identified instances of altered protein-protein interactions in the hybrid, for instance, in complexes related to proteostasis and in mitochondrial protein complexes. Overall, this study uncovers the likely frequent occurrence of chimeric protein complexes with few exceptions, which may result from incompatibilities or imbalances between the parental proteomes.
Assuntos
Hibridização Genética , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteômica , Saccharomyces cerevisiae/genéticaRESUMO
Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.
RESUMO
Metabolic changes alter the cellular milieu; can this also change intracellular protein folding? Since proteostasis can modulate mutational buffering, if change in metabolism has the ability to change protein folding, arguably, it should also alter mutational buffering. Here we find that altered cellular metabolic states in E. coli buffer distinct mutations on model proteins. Buffered-mutants have folding problems in vivo and are differently chaperoned in different metabolic states. Notably, this assistance is dependent upon the metabolites and not on the increase in canonical chaperone machineries. Being able to reconstitute the folding assistance afforded by metabolites in vitro, we propose that changes in metabolite concentrations have the potential to alter protein folding capacity. Collectively, we unravel that the metabolite pools are bona fide members of proteostasis and aid in mutational buffering. Given the plasticity in cellular metabolism, we posit that metabolic alterations may play an important role in cellular proteostasis.
Assuntos
Proteostase/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Metaboloma/genética , Mutação/genética , Pressão Osmótica/fisiologia , Dobramento de Proteína , Proteostase/genéticaRESUMO
The protective redundancy of paralogous genes partly relies on the fact that they carry their functions independently. However, a significant fraction of paralogous proteins may form functionally dependent pairs, for instance, through heteromerization. As a consequence, one could expect these heteromeric paralogs to be less protective against deleterious mutations. To test this hypothesis, we examined the robustness landscape of gene loss-of-function by CRISPR-Cas9 in more than 450 human cell lines. This landscape shows regions of greater deleteriousness to gene inactivation as a function of key paralog properties. Heteromeric paralogs are more likely to occupy such regions owing to their high expression and large number of protein-protein interaction partners. Further investigation revealed that heteromers may also be under stricter dosage balance, which may also contribute to the higher deleteriousness upon gene inactivation. Finally, we suggest that physical dependency may contribute to the deleteriousness upon loss-of-function as revealed by the correlation between the strength of interactions between paralogs and their higher deleteriousness upon loss of function.
Assuntos
Dosagem de Genes/genética , Duplicação Gênica/genética , Mapas de Interação de Proteínas/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional , Aptidão Genética/genética , Humanos , Mutação com Perda de Função/genéticaRESUMO
CRISPR-mediated base editors have opened unique avenues for scar-free genome-wide mutagenesis. Here, we describe a comprehensive computational workflow called beditor that can be broadly adapted for designing guide RNA libraries with a range of CRISPR-mediated base editors, Protospacer Adjacent Motif (PAM) recognition sequences, and genomes of many species. Additionally, to assist users in selecting the best sets of guide RNAs for their experiments, a priori estimates of editing efficiency, called beditor scores, are calculated. These beditor scores are intended to select guide RNAs that conform to requirements for optimal base editing: the editable base falls within maximum activity window of the CRISPR-mediated base editor and produces nonconfounding mutational effects with minimal predicted off-target effects. We demonstrate the utility of the software by designing guide RNAs for base editing to model or correct thousands of clinically important human disease mutations.
Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genômica/métodos , Mutagênese , RNA/genética , Software , Algoritmos , Animais , Genoma , Humanos , Bibliotecas , Polimorfismo de Nucleotídeo Único , Fluxo de TrabalhoRESUMO
Organisms maintain competitive fitness in the face of environmental challenges through molecular evolution. However, it remains largely unknown how different biophysical factors constrain molecular evolution in a given environment. Here, using deep mutational scanning, we quantified empirical fitness of >2000 single site mutants of the Gentamicin-resistant gene (GmR) in Escherichia coli, in a representative set of physical (non-native temperatures) and chemical (small molecule supplements) environments. From this, we could infer how different biophysical parameters of the mutations constrain molecular function in different environments. We find ligand binding, and protein stability to be the best predictors of mutants' fitness, but their relative predictive power differs across environments. While protein folding emerges as the strongest predictor at minimal antibiotic concentration, ligand binding becomes a stronger predictor of mutant fitness at higher concentration. Remarkably, strengths of environment-specific selection pressures were largely predictable from the degree of mutational perturbation of protein folding and ligand binding. By identifying structural constraints that act as determinants of fitness, our study thus provides coarse mechanistic insights into the environment specific accessibility of mutational fates.
Assuntos
Acetiltransferases/genética , Adaptação Biológica/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Evolução Molecular , Análise Mutacional de DNA/métodos , Meio Ambiente , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligantes , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Mutação , Dobramento de Proteína , Estabilidade Proteica , TemperaturaRESUMO
Various small molecules present in biological systems can assist protein folding in vitro and are known as chemical chaperones. De novo design of chemical chaperones with higher activity than currently known examples is desirable to ameliorate protein misfolding and aggregation in multiple contexts. However, this development has been hindered by limited knowledge of their activities. It is thought that chemical chaperones are typically poor solvents for a protein backbone and hence facilitate native structure formation. However, it is unknown if different chemical chaperones can act differently to modulate folding energy landscapes. Using a model slow folding protein, double-mutant Maltose-binding protein (DM-MBP), we show that a canonical chemical chaperone, trimethylamine-N-oxide (TMAO), accelerates refolding by decreasing the flexibility of the refolding intermediate (RI). Among a number of small molecules that chaperone DM-MBP folding, proline and serine stabilize the transition state (TS) enthalpically, while trehalose behaves like TMAO and increases the rate of barrier crossing through nonenthalpic processes. We propose a two-group classification of chemical chaperones based upon their thermodynamic effect on RI and TS, which is also supported by single molecule Förster resonance energy transfer (smFRET) studies. Interestingly, for a different test protein, the molecular mechanisms of the two groups of chaperones are not conserved. This provides a glimpse into the complexity of chemical chaperoning activity of osmolytes. Future work would allow us to engineer synergism between the two classes to design more efficient chemical chaperones to ameliorate protein misfolding and aggregation problems.