Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 193(4): 2430-2441, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590954

RESUMO

Endosperm cell number is critical in determining grain size in maize (Zea mays). Here, zma-miR159 overexpression led to enlarged grains in independent transgenic lines, suggesting that zma-miR159 contributes positively to maize grain size. Targeting of ZmMYB74 and ZmMYB138 transcription factor genes by zma-miR159 was validated using 5' RACE and dual-luciferase assay. Lines in which ZmMYB74 was knocked out using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) presented a similar enlarged grain phenotype as those with zma-miR159 overexpression. Downstream genes regulating cell division were identified through DNA affinity purification sequencing using ZmMYB74 and ZmMYB138. Our results suggest that zma-miR159-ZmMYB modules act as an endosperm development hub, participating in the division and proliferation of endosperm cells.


Assuntos
Fatores de Transcrição , Zea mays , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo , Endosperma/genética , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Sequência de Bases
2.
BMC Plant Biol ; 23(1): 82, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750803

RESUMO

BACKGROUND: Seed size is an important factor contributing to maize yield, but its molecular mechanism remains unclear. The seed coat, which serves as one of the three components of the maize grain, determines seed size to a certain extent. The seed coat also shares the maternal genotype and is an ideal material for studying heterosis. RESULTS: In this study, the self-pollinated seeds of the maize hybrid Yudan888 and its parental lines were continuously collected from 0 day after pollination (DAP) to 15 DAP for phenotyping, cytological observation and RNA-seq. The phenotypic data showed that 3 DAP and 8 DAP are the best time points to study maize seed coat heterosis. Cytological observations indicated that maize seed coat heterosis might be the result of the coordination between cell number and cell size. Furthermore, the RNA-seq results showed that the nonadditive genes changed significantly between 3 and 8 DAP. However, the number of genes expressed additively was not significantly different. Our findings suggest that seed coat heterosis in hybrid is the result of nonadditive expression caused by dynamic changes in genes at different time points during seed expansion and seed coat development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that genes related to DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation contributed significantly to hybrid seed coat heterosis. CONCLUSION: Maize seed coat phenotyping allowed us to infer that 3 DAP and 8 DAP are important time points in the study of seed coat heterosis. Our findings provide evidence for genes involved in DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation in hybrid with high or low parental expression as major contributors to hybrid seed coat heterosis.


Assuntos
Vigor Híbrido , Zea mays , Zea mays/genética , Sementes/genética , Genótipo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hibridização Genética
3.
Plant Genome ; 16(1): e20293, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478177

RESUMO

Important traits related to maize (Zea mays L.) grain yield, such as kernel row number, ear length, kernel number per row, are determined during the development of female inflorescence. There is a significant positive correlation between yield component and the activity of inflorescence meristem (IM). To find the key stage of heterosis in the development of the ear, immature ears (from the IM stage until the end of the floral meristem [FM] stage) of Yudan888 and its parent lines were sampled to assay phenotype and for comparative transcriptomics analysis. The immature ear length of Yudan888 at the IM stage fitted an additive (mid-parental) model, but it showed high parental dominance at the spikelet-pair meristem (SPM) stage. Comparative analysis of transcriptomes suggested significant differences between additive and nonadditive expression patterns for different developmental stages. The number of distinct maternal or paternal genes (DMP) (genes expressed only in one parental line and their hybrid but silenced in another line) was greater than ABF1 (genes expressed in both parental lines but silenced in hybrid) at each stage. Gene Ontology (GO) enrichment suggested that the cell redox homeostasis genes with overdominance expression patterns in hybrids have an important contribution to heterosis. According to our research, an ear length heterosis network was established. The discovery of the inflection point for ear length heterosis allows us for inferring that the transition state of IM to SPM may be the starting point of ear length heterosis. These findings improved the understanding of maize ear length heterosis.


Assuntos
Vigor Híbrido , Zea mays , Zea mays/genética , Transcriptoma , Hibridização Genética , Perfilação da Expressão Gênica
4.
BMC Plant Biol ; 22(1): 563, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460977

RESUMO

BACKGROUND: Rice is a salt-sensitive crop. Complex gene regulatory cascades are likely involved in salinity stress in rice roots. microRNA168 (miR168) is a conserved miRNA among different plant species. It in-directly regulates the expression of all miRNAs by targeting gene ARGONAUTE1(AGO1). Short Tandem Target Mimic (STTM) technology is an ideal approach to study miRNA functions by in-activating mature miRNA in plants. RESULTS: In this study, rice miR168 was inactivated by STTM. The T3 generation seedlings of STTM168 exhibited significantly enhanced salt resistance. Direct target genes of rice miR168 were obtained by in silico prediction and further confirmed by degradome-sequencing. PINHEAD (OsAGO1), which was previously suggested to be a plant abiotic stress response regulator. RNA-Seq was performed in root samples of 150mM salt-treated STTM168 and control seedlings. Among these screened 481 differentially expressed genes within STTM168 and the control, 44 abiotic stress response related genes showed significant difference, including four known salt-responsive genes. CONCLUSION: Based on sequencing and qRT-PCR, a "miR168-AGO1-downstream" gene regulation model was proposed to be responsible for rice salt stress response. The present study proved miR168-AGO1 cascade to play important role in rice salinity stress responding, as well as to be applied in agronomic improvement in further.


Assuntos
MicroRNAs , Oryza , Tolerância ao Sal/genética , Oryza/genética , Estresse Salino/genética , Plântula/genética , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA