Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(8): 4189-4196, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323830

RESUMO

Bi2O2Se has attracted intensive attention due to its potential in electronics, optoelectronics, and ferroelectric applications. Despite that, there have only been a handful of experimental studies based on ultrafast spectroscopy to elucidate the carrier dynamics in Bi2O2Se thin films. Besides, different groups have reported various ultrafast timescales and associated mechanisms across films of different thicknesses. A comprehensive understanding in relation to thickness and fluence is still lacking. In this work, we have systematically explored the thickness-dependent Raman spectroscopy and ultrafast carrier dynamics in chemical vapor deposition (CVD)-grown Bi2O2Se thin films on a mica substrate with thicknesses varying from 22.44 nm down to 4.62 nm in both low and high pump fluence regions. Combining the thickness dependence and fluence dependence of the slow decay time, we demonstrate a hidden photoinduced ferroelectric transition in the thinner (<8 nm) Bi2O2Se films below the material damage thresholds, influenced by substrate-induced compressive strain and far-from-equilibrium excitation. Moreover, this transition can be manifested at high electronic excitation densities. Our results deepen the understanding of the interplay between the ferroelectric phase and semiconducting characteristics of Bi2O2Se thin films, offering potential applications in optoelectronic devices that benefit from the ferroelectric transition.

2.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

3.
Small ; 17(21): e2007909, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33871163

RESUMO

GaTe has recently attracted significant interest due to its direct bandgap and unique phase structure, which makes it a good candidate for optoelectronics. However, the controllable growth of large-sized monolayer and few-layer GaTe with tunable phase structures remains a great challenge. Here the controlled growth of large-sized GaTe with high quality, chemical uniformity, and good reproducibility is achieved through liquid-metal-assisted chemical vapor deposition method. By using liquid Ga, the rapid growth of 2D GaTe flakes with high phase-selectivity can be obtained due to its reduced reaction temperature. In addition, the method is used to synthesize many Ga-based 2D materials and their alloys, showing good universality. Raman spectra suggest that the as-grown GaTe own a relatively weak van der Waals interaction, where monoclinic GaTe displays highly-anisotropic optical properties. Furthermore, a p-n junction photodetector is fabricated using GaTe as a p-type semiconductor and 2D MoSe2 as a typical n-type semiconductor. The GaTe/MoSe2 heterostructure photodetector exhibits large photoresponsivity of 671.52 A W-1 and high photo-detectivity of 1.48 × 1010 Jones under illumination, owing to the enhanced light absorption and good quality of as-grown GaTe. These results indicate that 2D GaTe is a promising candidate for electronic and photoelectronic devices.

4.
ACS Appl Mater Interfaces ; 11(10): 9984-9993, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30784276

RESUMO

Self-assembled Ni(OH)2 nanosheet-decorated hierarchical flower-like MnCo2O4.5 nanoneedles were synthesized via a cost-effective and facile hydrothermal strategy, aiming to realize a high-capacity advanced electrode of a battery-supercapacitor hybrid (BSH) device. It is demonstrated that the as-synthesized hierarchical flower-like MnCo2O4.5@Ni(OH)2-nanosheet electrode exhibits a high specific capacity of 318 mAh g-1 at a current density of 3 A g-1 and still maintains a capacity of 263.5 mAh g-1 at a higher current density of 20 A g-1, with an extremely long cycle lifespan of 87.7% capacity retention after 5000 cycles. Moreover, using the unique core-shell structure as the cathode and hollow Fe2O3 nanoparticles/reduced graphene oxide as the anode, the BSH device delivers a high energy density of 56.53 Wh kg-1 when the power density reaches 1.9 kW kg-1, and there is an extraordinarily good cycling stability with the capacity retention rate of 90.4% after 3000 cycles. It is believed that the superior properties originate from desirable core-shell structures alleviating the impact of volume changes as well as the existence of two-dimensional Ni(OH)2 nanosheets with more active sites, thereby improving the cycle stability and achieving ultrahigh capacity. These results will provide more access to the rational material design of diverse nanostructures toward high-performance energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA