Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eukaryot Cell ; 11(5): 662-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389385

RESUMO

African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase I/metabolismo , Trypanosoma brucei brucei/metabolismo , Alelos , Sequência de Aminoácidos , Biologia Computacional , Meios de Cultura/metabolismo , Técnicas de Inativação de Genes , Microscopia de Fluorescência , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
2.
Microbiol Mol Biol Rev ; 74(4): 552-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21119017

RESUMO

Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.


Assuntos
Genoma de Protozoário , Trypanosoma/genética , Biologia Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Matriz Nuclear
3.
Biol Direct ; 4: 24, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19640276

RESUMO

The transcription machineries of Archaea and eukaryotes are similar in many aspects, but little is understood about archaeal chromatin and its role in transcription. Here, we describe the identification in hyperthermophilic Crenarchaeota and a Korarchaeon of an orthologue of the eukaryotic transcription elongation factor Elf1, which has been shown to function in chromatin structure maintenance of actively transcribed templates. Our discovery has implications for the relationship of chromatin and transcription in Archaea and the evolution of these processes in eukaryotes.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cromatina/genética , Crenarchaeota/genética , Regulação da Expressão Gênica em Archaea , Fatores de Transcrição/genética , Evolução Molecular , Regulação da Expressão Gênica em Archaea/genética
4.
Mol Microbiol ; 69(5): 1121-36, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627464

RESUMO

Nuclear transcription of Trypanosoma brucei displays unusual features. Most protein-coding genes are organized in large directional gene clusters, which are transcribed polycistronically by RNA polymerase II (pol II) with subsequent processing to generate mature mRNA. Here, we describe the identification and characterization of two trypanosome homologues of transcription elongation factor TFIIS (TbTFIIS1 and TbTFIIS2-1). TFIIS has been shown to aid transcription elongation by relieving arrested pol II. Our phylogenetic analysis demonstrated the existence of four independent TFIIS expansions across eukaryotes. While TbTFIIS1 contains only the canonical domains II and III, the N-terminus of TbTFIIS2-1 contains a PWWP domain and a domain I. TbTFIIS1 and TbTFIIS2-1 are expressed in procyclic and bloodstream form cells and localize to the nucleus in similar, but distinct, punctate patterns throughout the cell cycle. Neither TFIIS protein was enriched in the major pol II sites of spliced-leader RNA transcription. Single RNA interference (RNAi)-mediated knock-down and knockout showed that neither protein is essential. Double knock-down, however, impaired growth. Repetitive failure to generate a double knockout of TbTFIIS1 and TbTFIIS2-1 strongly suggests synthetical lethality and thus an essential function shared by the two proteins in trypanosome growth.


Assuntos
Núcleo Celular/química , Proteínas de Protozoários/química , Fatores de Elongação da Transcrição/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Animais , Archaea/classificação , Archaea/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Eucarióticas/classificação , Células Eucarióticas/fisiologia , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
5.
Nat Struct Mol Biol ; 14(8): 754-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632522

RESUMO

The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Interferência de RNA , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/antagonistas & inibidores , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas
6.
Cell ; 126(1): 63-77, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16839877

RESUMO

Human telomeres are protected by shelterin, a complex that includes the POT1 single-stranded DNA binding protein. We found that mouse telomeres contain two POT1 paralogs, POT1a and POT1b, and we used conditional deletion to determine their function. Double-knockout cells showed that POT1a/b are required to prevent a DNA damage signal at chromosome ends, endoreduplication, and senescence. In contrast, POT1a/b were largely dispensable for repression of telomere fusions. Single knockouts and complementation experiments revealed that POT1a and POT1b have distinct functions. POT1a, but not POT1b, was required to repress a DNA damage signal at telomeres. Conversely, POT1b, but not POT1a, had the ability to regulate the amount of single-stranded DNA at the telomere terminus. We conclude that mouse telomeres require two distinct POT1 proteins whereas human telomeres have one. Such divergence is unprecedented in mammalian chromosome biology and has implications for modeling human telomere biology in mice.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Telômero/genética , Animais , Divisão Celular/genética , Proliferação de Células , Células Cultivadas , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Evolução Molecular , Genes Letais/genética , Humanos , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Complexo Shelterina , Transdução de Sinais/genética , Especificidade da Espécie , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA