Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771049

RESUMO

High dietary intake of ß-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by ß-carotene-15,15'-oxygenase (BCO1) and ß-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-ß-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.


Assuntos
Dioxigenases , Produtos do Tabaco , Camundongos , Animais , Humanos , beta Caroteno/metabolismo , beta-Criptoxantina/farmacologia , Vitamina A , Dioxigenases/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Carotenoides/farmacologia , Carotenoides/metabolismo , Oxigenases , Pulmão/metabolismo , Camundongos Knockout
2.
Annu Rev Nutr ; 41: 411-431, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34111363

RESUMO

Recent dietary reference intake workshops focusing on nutrient requirements in chronic disease populations have called attention to the potential adverse effects of chronic medication use on micronutrient status. Although this topic is mostly ill defined in the literature, several noteworthy drug-nutrient interactions (DNIs) are of clinical and public health significance. The purpose of this narrative review is to showcase classic examples of DNIs and their impact on micronutrient status, including those related to antidiabetic, anticoagulant, antihypertensive, antirheumatic, and gastric acid-suppressing medications. Purported DNIs related to other drug families, while relevant and worthy of discussion, are not included. Unlike previous publications, this review is primarily focused on DNIs that have sufficient evidence supporting their inclusion in US Food and Drug Administration labeling materials and/or professional guidelines. While the evidence is compelling, more high-quality research is needed to establish clear and quantitative relationships between chronic medication use and micronutrient status.


Assuntos
Micronutrientes , Estado Nutricional , Humanos , Necessidades Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA