Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Psychiatry ; 11(1): 472, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518523

RESUMO

Schizophrenia is associated with three main categories of symptoms; positive, negative and cognitive. Of these, only the positive symptoms respond well to treatment with antipsychotics. Due to the lack of effect of antipsychotics on negative symptoms, it has been suggested that while the positive symptoms are related to a hyperdopaminergic state in associative striatum, the negative symptoms may be a result of a reduced dopamine (DA) activity in the nucleus accumbens (nAc). Drug abuse is common in schizophrenia, supposedly alleviating negative symptomatology. Some, but not all, drugs aggravate psychosis, tentatively due to differential effects on DA activity in striatal regions. Here this hypothesis was tested in rats by using a double-probe microdialysis technique to simultaneously assess DA release in the nAc and associative striatum (dorsomedial striatum; DMS) following administration of the psychosis-generating substances amphetamine (0.5 mg/kg), cocaine (15 mg/kg) and Δ9-tetrahydrocannabinol (THC, 3 mg/kg), and the generally non-psychosis-generating substances ethanol (2.5 g/kg), nicotine (0.36 mg/kg) and morphine (5 mg/kg). The data show that amphetamine and cocaine produce identical DA elevations both in the nAc and DMS, whereas nicotine increases DA in nAc only. Ethanol and morphine both increased DMS DA, but weaker and in a qualitatively different way than in nAc, suggesting that the manner in which DA is increased might be important to the triggering of psychosis. THC elevated DA in neither region, indicating that the pro-psychotic effects of THC are not related to DA release. We conclude that psychosis-generating substances affect striatal DA release differently than non-psychosis-generating substances.


Assuntos
Transtornos Psicóticos , Transtornos Relacionados ao Uso de Substâncias , Animais , Corpo Estriado , Dopamina , Microdiálise , Núcleo Accumbens , Ratos
2.
Neuropharmacology ; 194: 108638, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116108

RESUMO

Repeated administration of psychostimulants, such as amphetamine, is associated with a progressive increased sensitivity to some of the drug's effects, but tolerance towards others. We hypothesized that these adaptations in part could be linked to differential effects by amphetamine on dopaminergic signaling in striatal subregions. To test this theory, acute and long-lasting changes in dopaminergic neurotransmission were assessed in the nucleus accumbens (nAc) and the dorsomedial striatum (DMS) following amphetamine exposure in Wistar rats. By means of in vivo microdialysis, dopamine release induced by local administration of amphetamine was monitored in nAc and DMS of amphetamine naïve rats, and in rats subjected to five days of systemic amphetamine administration (2.0 mg/kg/day) followed by two weeks of withdrawal. In parallel, ex vivo electrophysiology was conducted to outline the effect of acute and repeated amphetamine exposure on striatal neurotransmission. The data shows that amphetamine increases dopamine in a concentration-dependent and subregion-specific manner. Furthermore, repeated administration of amphetamine followed by abstinence resulted in a selective decrease in baseline dopamine in the nAc, and a potentiation of the relative dopamine elevation after systemic amphetamine in the same area. Ex vivo electrophysiology demonstrated decreased excitatory neurotransmission in brain slices from amphetamine-treated animals, and a nAc selective shift in the responsiveness to the dopamine D2-receptor agonist quinpirole. These selective effects on dopamine signaling seen in striatal subregions after repeated drug exposure may partially explain why tolerance develops to the rewarding effects, but not towards the psychosis inducing properties of amphetamine.


Assuntos
Anfetamina/farmacologia , Corpo Estriado/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Dopamina/líquido cefalorraquidiano , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptores de Dopamina D2
3.
J Neural Transm (Vienna) ; 128(1): 83-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33351169

RESUMO

Approved medications for alcohol use disorder (AUD) display modest effect sizes. Pharmacotherapy aimed at the mechanism(s) by which ethanol activates the dopamine reward pathway may offer improved outcomes. Basal and ethanol-induced accumbal dopamine release in the rat involve glycine receptors (GlyR) in the nucleus accumbens (nAc). Glycine transporter 1 (GlyT-1) inhibitors, which raise extracellular glycine levels, have repeatedly been shown to decrease ethanol intake in the rat. To further explore the rational for elevating glycine levels in the treatment of AUD, this study examined accumbal extracellular glycine and dopamine levels and voluntary ethanol intake and preference in the rat, after systemic treatment with glycine. The effects of three different doses of glycine i.p. on accumbal glycine and dopamine levels were examined using in vivo microdialysis in Wistar rats. In addition, the effects of the intermediate dose of glycine on voluntary ethanol intake and preference were examined in a limited access two-bottle ethanol/water model in the rat. Systemic glycine treatment increased accumbal glycine levels in a dose-related manner, whereas accumbal dopamine levels were elevated in a subpopulation of animals, defined as dopamine responders. Ethanol intake and preference decreased after systemic glycine treatment. These results give further support to the concept of elevating central glycine levels to reduce ethanol intake and indicate that targeting the glycinergic system may represent a pharmacologic treatment principle for AUD.


Assuntos
Dopamina , Glicina , Animais , Etanol , Masculino , Microdiálise , Núcleo Accumbens , Ratos , Ratos Wistar
4.
Addict Biol ; 25(5): e12807, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293045

RESUMO

Alcohol use disorder (AUD) is detrimental to health and causes preterm death. Unfortunately, available pharmacological and nonpharmacological treatments have small effect sizes, and improved treatments are needed. Smoking and AUD share heritability and are pharmacologically associated, since drug-induced dopamine (DA) output in nucleus accumbens (nAc) involves nicotinic acetylcholine receptors (nAChRs) in both cases. Smoking therapy agents, such as the partial nAChR agonist varenicline or the DA/noradrenaline transporter inhibitor bupropion, could potentially also be used for AUD. To investigate this hypothesis, the effects of varenicline, bupropion, or a combination of the two on nAc DA levels, ethanol intake, and the alcohol deprivation effect (ADE) were examined. In vivo microdialysis showed that varenicline (1.5 mg/kg) and bupropion (2.5, 5, or 10 mg/kg) elevated nAc DA levels and that the combination produced additive effects. Five days treatment with varenicline, bupropion, or the combination did not suppress ethanol consumption, as compared with vehicle-treated control. However, combined administration of varenicline and bupropion completely blocked the ADE when readministering ethanol following 14 days of abstinence. Since ADE is considered highly predictive for the clinical outcome in man, our data suggest that the combination of varenicline and bupropion could be a promising treatment for AUD.


Assuntos
Transtornos Relacionados ao Uso de Álcool/prevenção & controle , Bupropiona/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Agentes de Cessação do Hábito de Fumar/farmacologia , Vareniclina/farmacologia , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Ratos , Ratos Wistar
5.
Alcohol Clin Exp Res ; 43(5): 803-811, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30860600

RESUMO

BACKGROUND: Addiction has been conceptualized as a shift from controlled recreational use toward compulsive and habitual drug-taking behavior. Although the brain reward system is vital for alcohol reward and reinforcement, other neuronal circuits may be involved in controlling long-term alcohol-seeking and drug-taking behaviors. The aim of this study was to outline alcohol-induced neuroplasticity in defined cortical and striatal subregions, previously implicated in alcohol use disorder. METHODS: Male Wistar rats were allowed to voluntarily consume ethanol (EtOH) in an intermittent manner for 2 months, after which ex vivo electrophysiological recordings were performed and data compared with isolated water controls housed in parallel. RESULTS: Field potential recordings revealed an increase in field excitatory postsynaptic potentials (fEPSPs) in the dorsomedial striatum (DMS) of rats consuming EtOH, while a depression of evoked potentials was detected in the dorsolateral striatum (DLS). Mean activity in cortical (medial prefrontal cortex, lateral orbitofrontal cortex [OFC]), and accumbal regions (nucleus accumbens [nAc] core/shell) was not significantly altered as compared to water-drinking controls, but a correlation between the amount of alcohol consumed and evoked potentials could be found in both dorsal striatal subregions, OFC, and nAc core. Removal of EtOH for 1 to 2 days was sufficient to restore neurotransmission in the DLS, while the increase in fEPSP amplitude sustained in the DMS. CONCLUSIONS: These preclinical findings are in line with clinical observations indicating that alcohol produces neurophysiological transformations in dorsal striatal circuits, which in turn may lead to disruptions in decision-making processes that could further promote alcohol misuse.


Assuntos
Adaptação Fisiológica/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Corpo Estriado/fisiologia , Etanol/administração & dosagem , Córtex Pré-Frontal/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/tendências , Animais , Corpo Estriado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Autoadministração
6.
Neuropsychopharmacology ; 41(13): 3051-3059, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27388328

RESUMO

Drug addiction has been conceptualized as maladaptive recruitment of integrative circuits coursing through the striatum, facilitating drug-seeking and drug-taking behavior. The aim of this study was to define temporal neuroadaptations in striatal subregions initiated by 3 weeks of intermittent nicotine exposure followed by protracted abstinence. Enhanced rearing activity was assessed in motor activity boxes as a measurement of behavioral change induced by nicotine (0.36 mg/kg), whereas electrophysiological field potential recordings were performed to evaluate treatment effects on neuronal activity. Dopamine receptor mRNA expression was quantified by qPCR, and nicotine-induced dopamine release was measured in striatal subregions using in vivo microdialysis. Golgi staining was performed to assess nicotine-induced changes in spine density of medium spiny neurons. The data presented here show that a brief period of nicotine exposure followed by abstinence leads to temporal changes in synaptic efficacy, dopamine receptor expression, and spine density in a subregion-specific manner. Nicotine may thus initiate a reorganization of striatal circuits that continues to develop despite protracted abstinence. We also show that the response to nicotine is modulated in previously exposed rats even after 6 months of abstinence. The data presented here suggests that, even though not self-administered, nicotine may produce progressive neuronal alterations in brain regions associated with goal-directed and habitual performance, which might contribute to the development of compulsive drug seeking and the increased vulnerability to relapse, which are hallmarks of drug addiction.


Assuntos
Corpo Estriado/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Tabagismo/patologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Objetivos , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Masculino , Microdiálise , Rede Nervosa/ultraestrutura , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Coloração pela Prata , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA