Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Fluids Barriers CNS ; 21(1): 41, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755589

RESUMO

INTRODUCTION: Hyperbaric oxygen has been used as a medical treatment tool in hyperbaric chambers and is an integral part of professional and combat divers' activity. In extreme cases, exposure to hyperbaric oxygen can develop central nervous system oxygen toxicity (CNS-OT), which leads to seizures and eventually death. CNS-OT is caused by neuronal hyperactivity due to high oxygen levels, potentially damaging brain cells including the blood-brain barrier (BBB). However, the effect of hyperbaric oxygen levels on the healthy BBB has not been characterized directly yet. METHODS: Six or three different groups of ~ eight rats or mice, respectively, were exposed to increasing levels of partial pressure of oxygen (0.21 to 5 ATA) in a hyperbaric chamber, followed by MRI scanning with gadolinium. Statistical significance (adjusted p-value ≤ 0.05) was assessed using linear regression and ordinary one-way (rats) or two-way (mice) ANOVA with correction of multiple comparison tests. In rats, the effect of 100% oxygen at 5 ATA was independently validated using FITC-Dextran (5 kDa). Statistical significance (p-value ≤ 0.05) was assessed using Welch's t-test and effect size was calculated by Cohen's D. RESULTS: In rats, analyzed MRI scans showed a significant trend of increase in the % gadolinium in brain tissues as a result of hyperbaric oxygen pressures (p-value = 0.0079). The most significant increase was measured at 4 ATA compared to air (adjusted p-value = 0.0461). Significant increased FITC-Dextran levels were measured in the rats' brains under 100% oxygen at 5 ATA versus air (p-value = 0.0327; Effect size = 2.0). In mice, a significant increase in gadolinium penetration into the hippocampus and frontal cortex was measured over time (adjusted p-value < 0.05) under 100% oxygen at 3 and 5 ATA versus air, and between the treatments (adjusted p-value < 0.0001). CONCLUSIONS: The BBB is increasingly disrupted due to higher levels of hyperbaric oxygen in rodents, indicating a direct relation between hyperbaric oxygen and BBB dysregulation for the first time. We suggest considering this risk in different diving activities, and protocols using a hyperbaric chamber. On the other hand, this study highlights the potential therapeutic usage of hyperbaric oxygen for controlled drug delivery through the BBB into brain tissues in different brain-related diseases.


Assuntos
Barreira Hematoencefálica , Oxigenoterapia Hiperbárica , Imageamento por Ressonância Magnética , Animais , Oxigenoterapia Hiperbárica/métodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Ratos , Masculino , Camundongos , Oxigênio/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL
2.
Nucleic Acids Res ; 51(17): 9369-9384, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503837

RESUMO

Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.


Assuntos
Quadruplex G , Grânulos de Estresse , Humanos , DNA/química , RecQ Helicases/metabolismo , RNA/genética , Grânulos de Estresse/metabolismo
3.
Nucleic Acids Res ; 50(20): 11426-11441, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350614

RESUMO

RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.


Assuntos
Quadruplex G , Proteínas de Ligação a RNA , Grânulos de Estresse , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA/química , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Nat Neurosci ; 25(4): 433-445, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361972

RESUMO

The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Subunidade beta de Receptor de Interleucina-18/genética , Regiões 3' não Traduzidas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade beta de Receptor de Interleucina-18/metabolismo , Neurônios Motores/metabolismo
5.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217318

RESUMO

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Camundongos , Proteômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
6.
Transcription ; 6(3): 41-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226151

RESUMO

Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.


Assuntos
Biologia Computacional , Regiões Promotoras Genéticas , Software , Animais , Bases de Dados de Compostos Químicos , Drosophila melanogaster , Sítio de Iniciação de Transcrição
7.
Biochim Biophys Acta ; 1849(8): 1116-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25934543

RESUMO

The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.


Assuntos
Expressão Gênica , Regiões Promotoras Genéticas , Animais , Humanos , RNA Polimerase II/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Fatores de Transcrição/fisiologia , Iniciação da Transcrição Genética/fisiologia , Transcrição Gênica
8.
Cell Metab ; 20(5): 870-881, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25448701

RESUMO

The unfolded protein response (UPR) allows cells to adjust the capacity of the endoplasmic reticulum (ER) to the load of ER-associated tasks. We show that activation of the Caenorhabditis elegans transcription factor DAF-16 and its human homolog FOXO3 restore secretory protein metabolism when the UPR is dysfunctional.We show that DAF-16 establishes alternative ER-associated degradation systems that degrade misfolded proteins independently of the ER stress sensor ire-1 and the ER-associated E3 ubiquitin ligase complex sel-11/sel-1. This is achieved by enabling autophagy-mediated degradation and by increasing the levels of skr-5, a component of an ER associated ubiquitin ligase complex. These degradation systems can act together with the conserved UPR to improve ER homeostasis and ER stress resistance, beyond wild-type levels. Because there is no sensor in the ER that activates DAF-16 in response to intrinsic ER stress, natural or artificial interventions that activate DAF-16 may be useful therapeutic approaches to maintain ER homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Degradação Associada com o Retículo Endoplasmático , Fatores de Transcrição Forkhead/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Estresse do Retículo Endoplasmático , Proteína Forkhead Box O3 , Células HEK293 , Humanos , Mutação , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA