Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-19, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434311

RESUMO

In the ever-evolving field of drug discovery, the integration of Artificial Intelligence (AI) and Machine Learning (ML) with cheminformatics has proven to be a powerful combination. Cheminformatics, which combines the principles of computer science and chemistry, is used to extract chemical information and search compound databases, while the application of AI and ML allows for the identification of potential hit compounds, optimization of synthesis routes, and prediction of drug efficacy and toxicity. This collaborative approach has led to the discovery, preclinical evaluations and approval of over 70 drugs in recent years. To aid researchers in the pursuit of new drugs, this article presents a comprehensive list of databases, datasets, predictive and generative models, scoring functions and web platforms that have been launched between 2021 and 2022. These resources provide a wealth of information and tools for computer-assisted drug development, and are a valuable asset for those working in the field of cheminformatics. Overall, the integration of AI, ML and cheminformatics has greatly advanced the drug discovery process and continues to hold great potential for the future. As new resources and technologies become available, we can expect to see even more groundbreaking discoveries and advancements in these fields.Communicated by Ramaswamy H. Sarma.

2.
J Appl Microbiol ; 133(5): 2717-2741, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36017561

RESUMO

The rhizosphere is the region around the plant roots where maximum microbial activities occur. In the rhizosphere, microorganisms' beneficial and harmful activities affect plant growth and development. The mutualistic rhizospheric bacteria which improve plant growth and health are known as plant growth-promoting rhizobacteria (PGPR). They are very important due to their ability to help the plant in diverse ways. PGPR such as Pseudomonas, Bacillus, Azospirillum, Azotobacter, Arthrobacter, Achromobacter, Micrococcus, Enterobacter, Rhizobium, Agrobacterium, Pantoea and Serratia are now very well known. Rhizomicrobiome plays critical roles in nutrient acquisition and assimilation, improved soil texture, secreting and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics and various signal compounds, all leading to the enhancement of plant growth and development. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. In this review, we highlight the rhizobacteria diversity and cutting-edge findings focusing on the role of a PGPR in plant growth and development. We also discussed the role of PGPR in resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) stresses.


Assuntos
Metais Pesados , Pantoea , Desenvolvimento Vegetal , Rizosfera , Estresse Fisiológico , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo , Antibacterianos , Hormônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA