Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24679, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304810

RESUMO

Plastics, which majorly consist of polypropylene (PP), polyethylene (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE) and high-density polyethylene (HDPE)), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), etc., are the most abundant municipal solid wastes (MSW). They have been utilized as a cheap carbon feedstock in the synthesis of carbon nanotubes (CNTs) because of their high hydrocarbon content, mainly carbon and hydrogen, especially for the polyolefins. In this review, the detailed progress made so far in the use of plastics (both waste and virgin) as cheap carbon feedstock in the synthesis of CNTs (only) over the years is studied. The primary aim of this work is to provide an expansive landscape made so far, especially in the areas of catalysts, catalyst supports, and the methods employed in their preparations and other operational growth conditions, as well as already explored applications of plastic-derived CNTs. This is to enable researchers to easily access, understand, and summarise previous works done in this area, forging ahead towards improving the yield and quality of plastic-derived CNTs, which could extend their market and use in other purity-sensitive applications.

2.
Sci Rep ; 12(1): 18665, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333383

RESUMO

In this study, cellulose nanocrystals (CNCs) were obtained from South African corncobs using an acid hydrolysis process. The delignification of corncobs was carried out by using alkali and bleaching pretreatment. Furthermore, the Box-Behnken Design (BBD) was used as a design of experiment (DOE) for statistical experimentations that will result in logical data to develop a model that explains the effect of variables on the response (CNCs yield). The effects (main and interactive) of the treatment variables (time, temperature, and acid concentration) were investigated via the response methodology approach and the obtained model was used in optimizing the CNCs yield. Surface morphology, surface chemistry, and the crystallinity of the synthesized CNC were checked using scanning electron microscopy (SEM), a Fourier Transform Infra-red spectroscopy (FTIR), and an X-ray diffraction (XRD) analysis, respectively. The SEM image of the raw corncobs revealed a smooth and compact surface morphology. Results also revealed that CNCs have higher crystallinity (79.11%) than South African waste corncobs (57.67%). An optimum yield of 80.53% CNCs was obtained at a temperature of 30.18 °C, 30.13 min reaction time, and 46 wt% sulfuric acid concentration. These optimized conditions have been validated to confirm the precision. Hence, the synthesized CNCs may be suitable as filler in membranes for different applications.


Assuntos
Celulose , Nanopartículas , Celulose/química , Zea mays , África do Sul , Nanopartículas/química , Temperatura
3.
ACS Omega ; 7(45): 40740-40749, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406532

RESUMO

There is a high demand for eco-friendly, effective, and high-performance corrosion inhibitors for industrial applications. Thus, the corrosion property of aluminum alloys was studied in essential oil-containing sodium chloride solution at various concentrations. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), surface tests, and weight loss analysis were used to study the corrosion inhibition mechanism of the essential oil. The essential oil showed the highest inhibition efficiency of 97.01% at 1000 ppm. A high efficiency of 96.03% was achieved even after 168 h of exposure. The potentiodynamic polarization test showed that the essential oil is a mixed-type inhibitor. EIS results show better adsorption of the oil on the surface of the aluminum at increased inhibitor concentrations. The Langmuir's adsorption isotherm model was found to describe the adsorption behavior. The surface morphology of the uninhibited and inhibited specimens examined by a scanning electron microscope equipped with an energy-dispersive X-ray spectroscope confirmed the protective film of the inhibitor molecules on the aluminum surface.

4.
Membranes (Basel) ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005715

RESUMO

In this study, silica sodalite (SSOD) was prepared via topotactic conversion and different silica sodalite loadings were infused into the polysulfone (PSF) for application in phenol-containing water treatment. The composite membranes were fabricated through the phase inversion technique. Physicochemical characteristics of the nanoparticles and membranes were checked using a Scanning Electron Microscope (SEM), Brunauer Emmett-Teller (BET), and Fourier Transform Infrared (FTIR) for surface morphology, textural properties, and surface chemistry, respectively. A nanotensile test, Atomic Force Microscopy (AFM), and contact angle measurement were used to check the mechanical properties, surface roughness, and hydrophilicity of the membranes, respectively. SEM results revealed that the pure polysulfone surface is highly porous with large evident pores. However, the pores decreased with increasing SSOD loading. The performance of the fabricated membranes was evaluated using a dead-end filtration device at varying feed pressure during phenol-containing water treatment. The concentration of phenol in water used in this study was 20 mg/L. The pure PSF displayed the maximum phenol rejection of 95 55% at 4 bar, compared to the composite membranes having 61.35% and 64.75% phenol rejection for 5 wt.% SSOD loading and 10 wt.% SSOD loading, respectively. In this study, a novel Psf-infused SSOD membrane was successfully fabricated for the treatment of synthetic phenol-containing water to alleviate the challenges associated with it.

5.
Polymers (Basel) ; 14(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35890673

RESUMO

The future and continuity of nanomaterials are heavily dependent on their availability and affordability. This could be achieved when cheap materials are actively employed as starting materials for nanomaterials synthesis. In this study, waste corn cob char was used as support during the preparation of the NiMo catalyst, and the effect of different char-activating techniques on the microstructure, yield and quality of carbon nanotubes (CNTs) obtained from waste polypropylene (PP) plastics using the chemical vapor deposition (CVD) technique was investigated. Properties of the catalysts and obtained nanomaterials were evaluated by XRD, SEM, N2 physisorption experiment, FTIR, Raman spectroscopy and TEM. Results showed improved surface properties of the NiMo catalyst supported on chemically (NiMo/ACX) and physically activated char (NiMo/ACT) compared to the NiMo catalyst supported on non-activated char (NiMo/AC0). High-quality CNTs were deposited over NiMo/ACT compared to NiMo/ACX and NiMo/AC0. It was also observed that different activation methods resulted in the formation of CNTs of different microstructures and yield. Optimum yield (470.0 mg CNTs/g catalyst) was obtained with NiMo/AC0, while NiMo/ACT gave the least product yield (70.0 mg CNTs/g catalyst) of the as-produced nanomaterials. Based on the results of the analysis, it was concluded that utilizing a cheap pyrogenic product of waste corn cob as a catalyst support in a bimetallic NiMo catalyst could offer a promising approach to mass producing CNTs and as a low-cost alternative in CNTs production from waste plastics.

6.
Membranes (Basel) ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35323795

RESUMO

The improvement of membrane applications for wastewater treatment has been a focal point of research in recent times, with a wide variety of efforts being made to enhance the performance, integrity and environmental friendliness of the existing membrane materials. Cellulose nanocrystals (CNCs) are sustainable nanomaterials derived from microorganisms and plants with promising potential in wastewater treatment. Cellulose nanomaterials offer a satisfactory alternative to other environmentally harmful nanomaterials. However, only a few review articles on this important field are available in the open literature, especially in membrane applications for wastewater treatment. This review briefly highlights the circular economy of waste lignocellulosic biomass and the isolation of CNCs from waste lignocellulosic biomass for membrane applications. The surface chemical functionalization technique for the preparation of CNC-based materials with the desired functional groups and properties is outlined. Recent uses of CNC-based materials in membrane applications for wastewater treatment are presented. In addition, the assessment of the environmental impacts of CNCs, cellulose extraction, the production techniques of cellulose products, cellulose product utilization, and their end-of-life disposal are briefly discussed. Furthermore, the challenges and prospects for the development of CNC from waste biomass for application in wastewater treatment are discussed extensively. Finally, this review unraveled some important perceptions on the prospects of CNC-based materials, especially in membrane applications for the treatment of wastewater.

7.
Philos Trans A Math Phys Eng Sci ; 380(2221): 20210140, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35220761

RESUMO

The development of resilient energy systems is important for sustainable cities and communities. However, in countries with insufficient national energy supply, electricity distributors rarely consider remote communities due to their distant settlement, low electricity demand and poor payment capabilities. The United Nations has set a goal to deliver universal energy access by 2030; hence, it has become imperative to deploy clean and affordable off-grid mini-grid solutions to previously abandoned communities. Access to energy in rural communities is expected to result in unlocking their economic potentials. This paper investigates the impact of a solar hybrid mini-grid on the socio-economic growth of local entrepreneurs in Gbamu Gbamu village, Nigeria. A total of 83 micro- and small-enterprises has been surveyed; descriptive statistics, paired-sample t-test, cross-tabulation and χ2 test, were used to assess the performance of businesses before and after electrification. The outcomes include the number of business enterprises created, employment statistics, energy expenses and income generated. Regression analysis was conducted on the relationship between the average income generated by businesses and independent socio-economic variables such as gender, marital status, household size, age, education level, years of business establishment, hours of operation, building tenure, capital source, number of employees, generator ownership and the days of operation. This article is part of the theme issue 'Developing resilient energy systems'.


Assuntos
Eletricidade , População Rural , Humanos , Nigéria , Fatores Socioeconômicos
8.
Front Microbiol ; 13: 1100102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733776

RESUMO

The discovery of antibiotics, which was once regarded as a timely medical intervention now leaves a bitter aftertaste: antimicrobial resistance (AMR), due to the unregulated use of these compounds and the poor management receiving wastewaters before discharge into pristine environments or the recycling of such treated waters. Wastewater treatment plants (WWTPs) have been regarded a central sink for the mostly unmetabolized or partially metabolised antibiotics and is also pivotal to the incidence of antibiotic resistance bacteria (ARBs) and their resistance genes (ARGs), which consistently contribute to the global disease burden and deteriorating prophylaxis. In this regard, we highlighted WWTP-antibiotics consumption-ARBs-ARGs nexus, which might be critical to understanding the epidemiology of AMR and also guide the precise prevention and remediation of such occurrences. We also discovered the unsophistication of conventional WWTPs and treatment techniques for adequate treatment of antibiotics, ARBs and ARGs, due to their lack of compliance with environmental sustainability, then ultimately assessed the prospects of cold atmospheric plasma (CAP). Herein, we observed that CAP technologies not only has the capability to disinfect wastewater polluted with copious amounts of chemicals and biologicals, but also have a potential to augment bioelectricity generation, when integrated into bio electrochemical modules, which future WWTPs should be retrofitted to accommodate. Therefore, further research should be conducted to unveil more of the unknowns, which only a snippet has been highlighted in this study.

9.
ACS Omega ; 6(31): 20112-20129, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395964

RESUMO

Understanding optimal process conditions is an essential step in providing high-quality fuel for energy production, efficient energy generation, and plant development. Thus, the effect of process conditions such as the temperature, time, nitrogen-to-solid ratio (NSR), and liquid-to-solid ratio (LSR) on pretreated waste pine sawdust (PSD) via torrefaction and solvolysis is presented. The desirability function approach and genetic algorithm (GA) were used to optimize the processes. The response surface methodology (RSM) based on Box-Behnken design (BBD) was used to determine the effect of the process conditions mentioned above on the higher heating value (HHV), mass yield (MY), and energy enhancement factor (EEF) of biochar/hydrochar obtained from waste PSD. Seventeen experiments were designed each for torrefaction and solvolysis processes. The benchmarked process conditions were as follows: temperature, 200-300 °C; time, 30-120 min; NSR/LSR, 4-5. In this study, the operating temperature was the most influential variable that affected the pretreated fuel's properties, with the NSR and LSR having the least effect. The oxygen-to-carbon content ratio and the HHV of the pretreated fuel sample were compared between the two pretreatment methods investigated. Solvolysis pretreatment showed a higher reduction in the oxygen-to-carbon content ratio of 47%, while 44% reduction was accounted for the torrefaction process. A higher mass loss and energy content were also obtained from solvolysis than the torrefaction process. From the optimization process results, the accuracy of the optimal process conditions was higher for GA (299 °C, 30.07 min, and 4.12 NSR for torrefaction and 295.10 °C, 50.85 min, and 4.55 LSR for solvolysis) than that of the desirability function based on RSM. The models developed were reliable for evaluating the operating process conditions of the methods studied.

10.
Membranes (Basel) ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925776

RESUMO

In this study, silica sodalite (SSOD) nanoparticles were synthesized by topotactic conversion and functionalized using HNO3/H2SO4 (1:3). The SSOD and functionalized SSOD (fSSOD) nanoparticles were infused into a Polysulfone (Psf) membrane to produce mixed matrix membranes. The membranes were fabricated via the phase inversion method. The membranes and the nanoparticles were characterized using Scanning Electron Microscopy (SEM) to check the morphology of the nanoparticles and the membranes and Fourier Transform Infrared to check the surface chemistry of the nanoparticles and the membranes. Thermal stability of the nanoparticles and the membranes was evaluated using Themogravimetry analysis (TGA) and the degree of hydrophilicity of the membranes was checked via contact angle measurements. The mechanical strength of the membranes and their surface nature (roughness) were checked using a nanotensile instrument and Atomic Force Microscopy (AFM), respectively. The textural property of the nanoparticles were checked by conducting N2 physisorption experiments on the nanoparticles at 77 K. AMD-treatment performance of the fabricated membranes was evaluated in a dead-end filtration cell using a synthetic acid mine drainage (AMD) solution prepared by dissolving a known amount of MgCl2, MnCl2·4H2O, Na2SO4, Al(NO3)3, Fe(NO3)3·9H2O, and Ca2OH2 in deionized water. Results from the N2 physisorption experiments on the nanoparticles at 77 K showed a reduction in surface area and increase in pore diameter of the nanoparticles after functionalization. Performance of the membranes during AMD treatment shows that, at 4 bar, a 10% fSSOD/Psf membrane displayed improved heavy metal rejection >50% for all heavy metals considered, expect the SSOD-loaded membrane that showed a rejection <13% (except for Al3+ 89%). In addition, coating the membranes with a PVA layer improved the antifouling property of the membranes. The effects of multiple PVA coating and behaviour of the membranes during real AMD are not reported in this study, these should be investigated in a future study. Therefore, the newly developed functionalized SSOD infused Psf membranes could find applications in the treatment of AMD or for the removal of heavy metals from wastewater.

11.
Polymers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924295

RESUMO

Phenol is regarded as a major pollutant, as the toxicity levels are in the range of 9-25 mg/L for aquatic life and humans. This study embedded silica sodalite (SSOD) and hydroxy sodalite (HSOD) nanoparticles into polysulfone (PSF) for enhancement of its physicochemical properties for treatment of phenol-containing wastewater. The pure polysulfone membranes and sodalite-infused membranes were synthesized via phase inversion. To check the surface morphology, surface hydrophilicity, surface functionality, surface roughness and measure the mechanical properties of the membranes, characterization techniques such as Scanning Electron Microscope (SEM), contact angle measurements, Fourier Transform Infrared, Atomic Force Microscopy (AFM) nanotensile tests were used, respectively. The morphology of the composite membranes showed incorporation of the sodalite crystals decreased the membrane porosity. The results obtained showed the highest contact angle of 83.81° for pure PSF as compared to that of the composite membranes. The composite membranes with 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF showed mechanical enhancement as indicated by a 20.96% and 19.69% increase in ultimate tensile strength, respectively compared to pure PSF. The performance evaluation of the membranes was done using a dead-end filtration cell at varied feed pressure. Synthetic phenol-containing wastewater was prepared by dissolving one gram of phenol crystals in 1 L of deionized water and used in this study. Results showed higher flux for sodalite infused membranes than pure PSF for both pure and phenol-containing water. However, pure PSF showed the highest phenol rejection of 93.55% as compared to 63.65% and 64.75% achieved by 10 wt.% HSOD/PSF and 10 wt.% SSOD/PSF, respectively. The two sodalite infused membranes have shown enhanced mechanical properties and permeability during treatment of phenol in synthetic wastewater.

12.
ACS Omega ; 6(5): 3508-3516, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33644524

RESUMO

The impacts of fossil energy on the climate and environment emphasize the need for alternative energy resources. The use of waste wood is one such method to potentially reduce fossil-based energy dependence. However, raw biomass fuel properties are generally poor and unpredictable, thus requiring pretreatment to maximize their energy potentials for an efficient conversion to syngas via pyro-gasification. Two species of pine sawdust (PSD) wastes generated in abundance from large-scale timber industries in Nigeria and South Africa were investigated for improvements in their fuel properties after torrefaction. Samples were torrefied under optimum conditions of 300 °C and 45 min. Different analytical procedures show that the higher heating value (HHV), enhancement factor, energy density, and solid yield of the Nigerian PSD exceeded those of their South African counterpart by 2.38, 5.37, 3.49, and 11.15%, respectively. The HHV of the torrefied fuels increased by 57.29 and 37.9% for the Nigerian and South African PSDs, respectively, when compared to the raw fuels. Also investigated were improvements in their H/C and O/C ratios and thermal degradation at varied heating rates.

13.
Membranes (Basel) ; 10(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137909

RESUMO

Nanocomposite sodalite/ceramic membranes supported on α-Al2O3 tubular support were prepared via the pore-plugging hydrothermal (PPH) synthesis protocol using one interruption and two interruption steps. In parallel, thin-film membranes were prepared via the direct hydrothermal synthesis technique. The as-synthesized membranes were evaluated for H2/CO2 separation in the context of pre-combustion CO2 capture. Scanning electron microscopy (SEM) was used to check the surface morphology while x-ray diffraction (XRD) was used to check the crystallinity of the sodalite crystals and as-synthesized membranes. Single gas permeation of H2, CO2, N2 and mixture gas H2/CO2 was used to probe the quality of the membranes. Gas permeation results revealed nanocomposite membrane prepared via the PPH synthesis protocols using two interruption steps displayed the best performance. This was attributed to the enhanced pore-plugging effect of sodalite crystals in the pores of the support after the second interruption step. The nanocomposite membrane displayed H2 permeance of 7.97 × 10-7 mol·s-1·m-2·Pa-1 at 100 °C and 0.48 MPa feed pressure with an ideal selectivity of 8.76. Regarding H2/CO2 mixture, the H2 permeance reduced from 8.03 × 10-7 mol·s-1·m-2·Pa-1 to 1.06 × 10-7 mol·s-1·m-2·Pa-1 at 25 °C and feed pressure of 0.18 MPa. In the presence of CO2, selectivity of the nanocomposite membrane reduced to 4.24.

14.
Environ Sci Pollut Res Int ; 27(34): 42346-42368, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32862347

RESUMO

The release of toxic organic compounds into the environment in an event of oil spillage is a global menace due to the potential impacts on the ecosystem. Several approaches have been employed for oil spills clean-up, with adsorption technique proven to be more promising for the total reclamation of a polluted site. Of the several adsorbents so far reported, adsorbent-based porous materials have gained attention for the reduction/total removal of different compounds in environmental remediation applications. The superior potential of mesoporous materials based on metal-organic frameworks (MOFs) against conventional adsorbents is due to their intriguing and enhanced properties. Therefore, this review presents recent development in MOF composites; methods of preparation; and their practical applications towards remediating oil spill, organic pollutants, and toxic gases in different environmental media, as well as potential materials in the possible deployment in reclaiming the polluted Niger Delta due to unabated oil spillage and gas flaring.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Poluição por Petróleo , Ecossistema , Níger
15.
Membranes (Basel) ; 10(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213937

RESUMO

In this study, a carbon nanotube (CNT)-infused blended polymer membrane was prepared and evaluated for phenol and benzene removal from petroleum industry wastewater. A 25:75 (by weight %) blended polysulfone/polyethersulfone (PSF/PES) membrane infused with CNTs was prepared and tested. The effect of functionalization of the CNTs on the quality and performance of the membrane was also investigated. The membranes were loaded with CNTs at different loadings: 0.5 wt. %, 1 wt. %, 1.5 wt. % pure CNTs (pCNTs) and 1 wt. % functionalized CNTs (fCNTs), to gain an insight into the effect of the amount of CNT on the quality and performance of the membranes. Physicochemical properties of the as-prepared membranes were obtained using scanning electron microscopy (SEM) for morphology, Raman spectroscopy for purity of the CNTs, Fourier transform infrared (FTIR) for surface chemistry, thermogravimetric analysis (TGA) for thermal stability, atomic force microscopy (AFM) for surface nature and nano-tensile analysis for the mechanical strength of the membranes. The performance of the membrane was tested with synthetic wastewater containing 20 ppm of phenol and 20 ppm of benzene using a dead-end filtration cell at a pressure ranging from 100 to 300 kPa. The results show that embedding CNTs in the blended polymer (PSF/PES) increased both the porosity and water absorption capacity of the membranes, thereby resulting in enhanced water flux up to 309 L/m2h for 1.5 wt. % pCNTs and 326 L/m2h for 1 wt. % functionalized CNT-loaded membrane. Infusing the polysulfone/polyethersulfone (PSF/PES) membrane with CNTs enhanced the thermal stability and mechanical strength. Results from AFM indicate enhanced hydrophilicity of the membranes, translating in the enhancement of anti-fouling properties of the membranes. However, the % rejection of membranes with CNTs decreased with an increase in pCNTs concentration and pressure, while it increased the membrane with fCNTs. The % rejection of benzene in the pCNTs membrane decreased with 13.5% and 7.55% in fCNT membrane while phenol decreased with 55.6% in pCNT membrane and 42.9% in the FCNT membrane. This can be attributed to poor CNT dispersion resulting in increased pore sizes observed when CNT concentration increases. Optimization of membrane synthesis might be required to enhance the separation performance of the membranes.

16.
Sci Rep ; 9(1): 17657, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776358

RESUMO

In this article, performance evaluation of PES membrane infused with chitosan and coated with polyamide layer for treatment of acid mine drainage (AMD) is reported. PES/chitosan membranes were fabricated by varying chitosan concentration (0, 0.5, 0.75 and 1 wt%) using phase inversion method. PES/chitosan membranes were coated with polyamide (PA) via co-solvent assisted interfacial polymerization technique (CAIP). Scanning electron microscopy (SEM) and contact angle analysis show that chitosan and polyamide could enhance permeability without affecting rejection of the membrane. The permeability was improved with increasing chitosan content. Atomic absorption spectroscopy (AAS) was used to quantitatively determine cations in the permeate and the sulphate ions were analysed using ultraviolet and visible (UV-VIS) spectrophotometer. Pure water flux of PES/PA membrane was significantly improved from 56 to 93 l/m2.hr with 1 wt% chitosan addition. Cation rejection (90.4, 88.3, 89.3 and 75.7% for Mn2+,Fe2+, Mg2+ and Ca2+, respectively) was observed to be higher than anion rejection (56.33% for SO42-), when chitosan content was 0.75 wt%. These results indicate that the positively charged membranes under acidic condition had strong repulsive forces with the cations than attractions forces with anions. Polyethersulphone membrane modified with chitosan and coated with polyamide layer displayed potential for application in treatment of AMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA