Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Aquat Toxicol ; 272: 106944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823071

RESUMO

Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.


Assuntos
Monitoramento Ambiental , Peixes , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Rios/química , Índia , Medição de Risco , Peixes/metabolismo , Sedimentos Geológicos/química , Bioacumulação , Brânquias/metabolismo , Brânquias/química
2.
Environ Pollut ; 352: 124097, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703985

RESUMO

Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.


Assuntos
Microplásticos , Polipropilenos , Poliestirenos , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Microplásticos/química , Polipropilenos/química , Poliestirenos/química , Poluentes Químicos da Água/química , Adsorção , Nanopartículas Metálicas/química , Nanopartículas/química
3.
Aquat Toxicol ; 268: 106838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295601

RESUMO

While the toxicity of nano-microplastics and polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms is well-studied, their joint impact on microalgae is less explored. This study focused on single and combined effects of PS-NPs (30 nm; concentrations: 2, 5, 10, and 25 mg/L) and two PAHs (chrysene and fluoranthene at 10, 100 µg/L) for 96 h on the accumulation, growth, photosynthetic parameters, and oxidative stress in the Chlamydomonas reinhardtii. The findings revealed that exposure to increasing concentrations of PS-NPs significantly reduced the growth inhibition ratio and chlorophyll-a content after 96 h. Both PAHs (100 µg/L) + PS-NPs (25 mg/L), significantly reduced the growth inhibition ratio and chlorophyll-a levels. Individual and combined exposures of PS-NPs and PAHs can prompt antioxidant responses like SOD, GPx, and GST, as well as an unaffected level of non-enzymatic antioxidant GSH and diminished CAT activity. Furthermore, both PAHs + PS-NPs triggered ROS levels, resulting in cell membrane damage. However, the reduced oxidative effect of LPO of combined exposures can be attributed to the activation of antioxidant defenses. In addition, the microscopic visualization data shows that PS-NPs adhered to the surface of microalgae. Also, PS-NPs reduced the adsorption of PAHs on the surface of C. reinhardtii. Altogether, this study implied that the influence of coexistent PS-NPs should be considered in the environmental risk assessment of PAHs in aquatic environments.


Assuntos
Chlamydomonas reinhardtii , Fluorenos , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Chlamydomonas reinhardtii/metabolismo , Antioxidantes/farmacologia , Crisenos , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo , Clorofila A
4.
Environ Pollut ; 344: 123342, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215870

RESUMO

This study aimed to gauge the toxicity of potentially toxic elements (PTEs) in coconut crops cultivated in arsenic-contaminated areas while offering a global perspective encompassing more than 100 impacted countries. The current investigation provides crucial insights into the assessment of PTEs pollution using the Bioaccumulation factor, Geo-accumulation index, Potential ecological risk index, Hazardous index, and Lifetime cancer risk (LCR) and highlights the potential human health risks posed by contaminated food, water, and soil. From 22 severely polluted sites in West Bengal, India, soil, groundwater (GW), and coconut water (CW) samples were collected, acidified, and digested using microwave digestion, for PTEs quantification using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results revealed that despite high concentrations of arsenic in soils (4.6 ± 3.4 mg kg-1), and GW (22.2 ± 150.9 µg L-1), CW (0.7 ± 3.1 µg L-1) levels were within permissible limits. Groups of PTEs with comparable sources and distributions were discovered through Principal Component Analysis (PCA). A speciation diagram was used to predict the prevalence of arsenic species in all three matrices. The Hazardous Index (HI < 1) indicated no probability of non-carcinogenic diseases for children and adults in all the compartments. However, exposure to GW and soil contaminated with Cr, As, and Cd by children (9.02 × 10-13 to 2.77 × 10-4) and adults (6.51 × 10-14 to 1.18 × 10-4) would increase their susceptibility to cancer (LCR >10-6). The study concluded that moderate lifetime consumption of CW is safe and has no significant impact on healthy individuals. Additionally, CW is a rich source of essential micronutrients such as Zn, Fe, Mn, and B. Overall, the findings of this study could help in developing appropriate strategies for reducing PTEs contamination and protecting human health.


Assuntos
Arsênio , Água Subterrânea , Metais Pesados , Neoplasias , Poluentes do Solo , Criança , Adulto , Humanos , Arsênio/análise , Cocos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Solo/química , Medição de Risco , Poluentes do Solo/análise
5.
Sci Total Environ ; 912: 169132, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070555

RESUMO

Persistent nanoplastics (NPs) and their interaction with ubiquitous iron oxide minerals (IOMs) require a detailed understanding to dictate NPs fate and transport in aqueous and subsurface environments. Current study emphasizes on understanding nanoplastics (NPs) interaction with magnetite, and its weathering-originated mineral colloids, i.e., maghemite and hematite under varying environmental conditions (pH, humic acid, ionic strength and water matrix). Results showed that the higher surface hydroxyl group, smaller particle size, and positive surface charge of magnetite led to maximum NPs sorption (805.8 mg/g) in comparison to maghemite (602 mg/g) and hematite (384.3 mg/g). Charge distribution and sedimentation kinetic studies in bimodal systems showed enhanced coagulation in magnetite-NPs system. FTIR and XPS analysis of NPs-IOMs reaction precipitate revealed the vital role of surface functionality in their interaction. Column experiments revealed higher NPs retention in IOMs-coated quartz sand than bare quartz sand. Further, in river water (RW), magnetite-coated sand has shown maximum NPs retention (>80 %) than maghemite (62 %) and hematite (52 %), suggesting limited NPs mobility in the presence of magnetite in subsurface conditions. These findings elucidated the dependence of NPs fate on IOMs in freshwater systems and illustrated IOMs impact on NPs mobility in the subsurface porous environment.

6.
Environ Res ; 235: 116605, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437871

RESUMO

The unceasing release of tiny plastics (microplastics and nanoplastics) and their additives, like metal ions, into the aquatic systems from industries and other sources is a globally escalating problem. Their combined toxic effects and human health hazard are already proven; hence, their remediation is requisite. This study utilised the nano-zerovalent iron-loaded sugarcane bagasse-derived biochar (nZVI-SBC) for simultaneous removal of Nanoplastics (NPs) of different functionality and size along with metal ions (Ni2+, Cd2+, AsO43-, and CrO42-). Batch and column experiments were conducted, and the results showed an efficient removal of contaminants with maximum sorption of carboxylate-modified NPs of size 500 nm (qmax = 90.3 mg/g) among all three NPs types. Significant removal was observed in Cd2+ in case of cations and CrO42- in case of anions with qmax = 44.0 and 87.8 mg/g, respectively. Kinetics and the isotherm modelling better fitted the pseudo-second-order kinetic model and Sips isotherm model, respectively for both NPs and metal ions. The designed material worked well in pH range of 4-8, ionic strength 1-20 mM and in complex aqueous matrices, with >90% removal. FTIR, zeta potential and the imaging analysis of the reaction precipitates confirmed the electrostatic attraction, pore retention and complexation as the potential mechanisms for removing NPs, whereas, XPS studies confirmed the reduction co-precipitation and surface complexation as the possible mechanism for removing metal ions. High values of attachment efficiency factor calculated from colloidal filtration theory (CFT) validated the experimental results and justified the high sorption of carboxylate modified 500 nm NPs particles. The synthesized material successfully removed both NPs of varying size and functionality and metal ions simultaneously with significant efficacy in complex environmental samples proving the broad applicability of material in realistic environmental conditions and different types of water treatment processes.


Assuntos
Metais Pesados , Nanopartículas , Saccharum , Poluentes Químicos da Água , Humanos , Ferro/análise , Plásticos , Celulose , Cádmio/análise , Microplásticos , Poluentes Químicos da Água/análise , Íons , Oxirredução , Adsorção , Cinética
7.
Mar Pollut Bull ; 194(Pt B): 115265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453167

RESUMO

In this study, for the first time, we evaluated microplastic contamination in water, beach sand, and fish samples collected from the seven most famous and crowded beaches of the eastern coast of India, which cover around 1200 km. The average number of microplastics found was 80 ± 33 microplastics/m3 and 4 ± 2 microplastics/kg dry weight with a numerical abundance of polyethylene and polystyrene for water and sand samples, respectively. The polymer hazard index score, which represents the severity of the microplastics scenario in the studied locations, depicts that this coastline falls under hazard levels IV and V (most hazardous) for water and sand samples, respectively. The study revealed that approximately 30 % of the commercially important fishes collected from the locations contained microplastics with polyethylene terephthalate and polypropylene being the most abundant types. Rastrelliger kanagurta and Sardinella gibbosa were identified as the most polluted species.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Areia , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes , Índia
8.
Chemosphere ; 308(Pt 3): 136376, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113660

RESUMO

Simultaneous removal of a wide range of toxic heavy metal cations and potential radionuclides from water bodies and their continuous filtration with a single low-cost and eco-friendly material represents several scientific merits. Herein, for the first time, we report the simple and straightforward wet-chemical synthesis of novel nano-Farringtonite (FAR) composed of magnesium and phosphate ions. Further, the potential of known alternate nano-hydroxyapatite (HAP) and novel engineered nano-FAR including their non-stoichiometric variations was evaluated for the removal of mimicking radionuclide (Sr2+) and heavy metals (Cd2+, and Zn2+) from water bodies. Non-stoichiometric FAR (ns-FAR) have shown multifold higher contaminant removal capacities than HAP, i.e., Sr2+≈ 85 mg/g vs 49.5 mg/g, Cd2+≈ 560 mg/g vs 98.5 mg/g, and Zn2+ = 489 mg/g vs 62 mg/g in batch mode. NsFAR showed complete removal of Cd2+ and Zn2+ with <20% and 0% recovery, respectively in three consecutive sorption-recovery cycles, probing towards permanent incorporation of these ions. Spectroscopic analysis and extended x-ray absorption fine structure (EXAFS) spectroscopy fitting confirmed ion exchange and crystal incorporation as probable removal mechanisms. The high ionic potential of Mg2+ allows easy ion exchange with +2 charged metal toxins of varying ionic radius at both Mg1 and Mg2 sites of FAR. nsFAR showed instantaneous separation of these cations in continuous column mode with >2,00,000 L/kg of water filtration capacity (at 1 mg/L), justifying the adsorbent's candidature in water purification applications.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio/análise , Cátions/química , Durapatita/química , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Metais Pesados/análise , Radioisótopos/análise , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Raios X
9.
Chemosphere ; 308(Pt 1): 136091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36002060

RESUMO

The release of metal-based nanoparticles (MNPs) and nanoplastic debris (NPDs) has become ubiquitous in the natural ecosystem. Interaction between MNPs and NPDs may alter their fate and transport in the sub-surface environment and have not been addressed so far. Therefore, the present study has explored the role of NPDs on the stability and mobility of extensively used MNPs, i.e., CuO nanoparticles (NPs) under varying soil solutions (SS) chemistry. In the absence of NPDs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (ksed(1/h)) for CuO NPs was >0.5 h-1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of NPDs. The ksed for CuO NPs decreased to half and found <0.25 h-1 in the presence of NPDs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in presence of NPDs. Results suggest that the release of NPDs in the terrestrial ecosystem is a potential threat leading to increased mobility of MNPs in the environment.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Ecossistema , Microplásticos , Óxidos , Solo , Soluções
10.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407157

RESUMO

It is our great pleasure to briefly introduce our motivation to collect scientific contributions for this Special Issue, entitled "Nano Geochemistry" [...].

11.
Chemosphere ; 299: 134369, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35318018

RESUMO

The presence of arsenic in the groundwater of the densely-populated Bengal Basin evolved as a mass-poisoning agent and is a reason for the misery of millions of people living here. High-level arsenic was detected in the shallow aquifer-tube wells of the basin in the late-20th century. The redox conditions and the biogeochemical activities in the shallow aquifers support the existence of arsenic in its most toxic +3 state. The shallow aquifers are constructed by the Holocene reduced grey sands, having a lesser capacity to hold the arsenic brought from the Himalayas by the Ganga-Brahmaputra-Meghna river system. Among several other hypotheses, the reductive dissolution of arsenic bearing Fe-oxyhydroxides coupled with the microbial activities in the organic-matter-rich Holocene grey sands is believed to be the primary reason for releasing arsenic in groundwater of basinal shallow aquifers. The deep aquifers below the late Pleistocene aquifers and the Palaeo-interfluvial aquifers capped by the last glacial maximum Palaeosol generally contain arsenic-free or low-arsenic water. Ingress of arsenic into the deep aquifers from the shallow aquifers was considered to have been caused by extensive non-domestic pumping. However, studies have found that extensive pumping is unlikely to contaminate the deep aquifer water with higher levels of arsenic within decadal time scales. Irrigation-pumping may produce hydraulic barriers between the shallow and deep aquifer-groundwater and distributes arsenic in the topsoil by flushing. Significant disparities have been observed among the Bengal basinal groundwater arsenic concentrations. However, abrupt spatial variation in groundwater arsenic concentrations has been a key feature of the basin.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Humanos , Areia , Água , Poluentes Químicos da Água/análise
12.
Environ Res ; 203: 111885, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390712

RESUMO

The extensive application of metal oxide nanoparticles (NPs) in various sectors has raised concern about their subsequent release and potentially harmful impacts on the soil system. The present study has addressed the interaction of CuO NPs with bentonite clay colloids (CC) under varying environmental parameters as a model to represent the soil pore water scenario. Based on CuO - CC interaction in model and natural soil solution extracts (SSE), the role of clay fraction and their stability on CuO retention in various types of soils have been evaluated. Results suggested that increasing ionic strength (IS) in the system caused aggregation of CuO NPs, and in the presence of CC, critical coagulation concentration decreased drastically from 27.8 and 17.3 mM to 10.7 and 0.33 mM for NaCl and CaCl2 respectively, due to heteroaggregation in the system. Interestingly, in the SSE, the dominating role of ionic valency, dissolved organic carbon (DOC), and CC was observed in colloidal stabilization over IS. No significant impact of temperature was observed on the stability of CuO NPs both in model and SSE. Further, stability studies in the SSE were correlated with NPs retention behavior in soils. Observations suggest that retention of CuO NPs in soils is a function of binding of the colloidal fraction to the soil, which in turn depends on the colloidal stability. The highest retention was observed in black and laterite soils, whereas lower binding of clay fraction in red soil caused the least retention. A decrease in Kd values after a certain application concentration provided maximum sustainable application concentration of CuO NPs, which may vary with soil properties. Results suggest that the binding of clay and organic matter with a sandy matrix of soil plays a prime role in deciding the overall fate of CuO NPs in the soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Argila , Coloides , Cobre/análise , Matéria Orgânica Dissolvida , Solo
13.
Sci Total Environ ; 818: 151831, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34813809

RESUMO

Despite the massive accumulation of nanoplastics (NPs) in the freshwater system, research so far has highly focused on the marine environment. NPs interaction with mineral surfaces can influence their fate in freshwater, which will further impact their bioavailability and transport to the oceans. Current work focuses on understanding NPs interaction with weathering sequence of minerals in freshwater under varying geochemical conditions. Primary mineral feldspar and weathering originated secondary minerals, i.e., kaolinite and gibbsite, were investigated for interaction with NPs under batch mode under relevant environmental conditions. Minerals-NPs interaction was also investigated in natural water samples. Results showed that the amorphous nature, small particle size, and positive surface charge of gibbsite resulted in multi-fold sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). FTIR spectroscopy revealed hydrogen bonding and complexation as major players in gibbsite-NPs interaction suggesting the possibility of their co-precipitation. The continuous adsorption-desorption and limited sorption capacity of feldspar and kaolinite can be attributed to their negative surface charge, larger size, crystalline nature, and physical sorption. Therefore, both minerals may co-transport and enhance the mobility of NPs.


Assuntos
Caulim , Microplásticos , Adsorção , Silicatos de Alumínio , Caulim/química , Minerais/química , Compostos de Potássio
14.
Toxics ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36668764

RESUMO

This study analyzed microplastics in the gastrointestinal tract of Siberian dace (Leuciscus leuciscus subsp. baicalensis (Dybowski, 1874)) in the remote Yenisei tributary of the Nizhnyaya (Lower) Tunguska River (Siberia, Russia). µRaman analysis showed that 60% of the fish from two different sites had ingested plastic microparticles (on average, 1.55 ± 1.95 items per individual). The most common type of microplastic were fibers, and the most abundant size category was 300 to 1000 µm. In the studied population, no significant differences in the MP content between the two sites or between males and females were found (p > 0.05). The tendency for higher MP ingestion by Siberian dace at earlier ages (2+ and 3+) compared to later (4+ and 5+) was observed, which may be connected to the features of the fish biology and ecology.

15.
Chem Commun (Camb) ; 57(59): 7280-7283, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34212165

RESUMO

A strategic modification involving (i) a multi-functional almond shell biochar surface support and (ii) capping with almond skin extracted antioxidants was performed to preserve redox-sensitive Fe0 nanoparticles (NPs). pXRD data showed generation of an iron-carbonyl shell on the supported Fe0 NPs (SA-Fe0), justifying successful antioxidant capping. The total metal removal capacity of 695 mg g-1i.e. AsO2- (300.2 mg g-1) > Cd2+ (224.2 mg g-1) > CrO42- (125.2 mg g-1) > Ni2+ (44.5 mg g-1) in batch mode, and 102 mg g-1 in continuous column setup confirms the excellent reactivity of the SA-Fe0 nanocomposite. Loss of the iron-carbonyl shell and iron oxidation during interaction with contaminants confirm no hindrance in electron transfer due to antioxidant capping.

16.
J Hazard Mater ; 417: 126096, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229390

RESUMO

"Nanoplastics- the emerging contaminants" and "agricultural waste to resource conversion" both are currently at the scientific frontiers and require solutions. This study aims to utilize sugarcane bagasse-derived biochar for the removal of nanoplastics (NPs) from aqueous environment. Three types of biochar were synthesized at three different pyrolysis temperatures, i.e. 350, 550, and 750 â„ƒ and evaluated for their potential in removing NPs. Effect of various environmental parameters, i.e., competing ions, pH, humic acid and complex aqueous matrices on NPs sorption was also studied. Results showed that attributing to decreased carbonyl functional groups, increased surface area and pore abundance, biochar prepared at 750 â„ƒ showed drastically higher NPs removal (>99%), while BC-550 and BC-350 showed comparatively lower NPs sorption (<39% and <24%, respectively). Further sorption studies confirmed instantaneous NPs removal with equilibrium attainment within 5 min of interaction and efficient NPs sorption capacity, i.e. 44.9 mg/g for biochar prepared at 750 â„ƒ. Non-linear-kinetic modeling suggested pseudo 1st order removal kinetics while isotherm and thermodynamic modeling confirmed- monolayer instantaneous sorption of NPs sorption. Enhanced electrostatic repulsion resulted in decrease in NPs sorption at alkaline conditions, whereas steric hindrance caused limited removal (<25%) at higher humic acid concentrations.

17.
Ecotoxicol Environ Saf ; 218: 112280, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33962275

RESUMO

Association of nanoparticles (NPs) with algae likely plays a critical role in their transfer in aquatic food chains. Although our understanding of the ecotoxicity and fate of NPs in the environment is increasing, it is still unclear how the physicochemical properties of NPs influence their interaction with algae at cellular levels and how this is reflected at a population level. This is due to the limitation in the existing analytical techniques to quantify the association of NPs with cells. To fill this data gap, we applied the novel technique of single-cell inductively coupled plasma mass spectrometry to quantify the cellular association of gold (Au)-NPs with algal cells (Pseudokirchneriella subcapitata) as a function of particle size, shape (spherical 10 nm, spherical 60 nm, spherical 100 nm, rod-shaped 10 × 40 nm, and rod-shaped 50 × 100 nm), and surface chemistry [citrate and natural organic matter (NOM) coating] on a cell-by-cell basis. The association of Au-NPs with algal cells was found to be a random probability following a so-called stochastic process; after 72 h of exposure, less than 45% of the cell population accumulated NPs on their surface. The number of Au-NPs per cell was found to be heterogeneously distributed as some cells were associated with a significantly higher number (e.g. up to 600 spherical 10 nm particles per cell) of Au-NPs than other cells present in the medium. The presence of NOM on the surface of the particles decreased the percentage of cells containing NPs except for the spherical 60 nm Au-NPs. We conclude that some algae within a population can accumulate NPs on their surface and this accumulation is influenced by the size, shape, and surface chemistry of NPs. It is important to understand how NPs may enter aquatic food chains to assess the possible risk.

18.
Chemosphere ; 279: 130587, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901892

RESUMO

Clean water, the elixir of life, is of tremendous importance in achieving environmental sustainability and the balanced functioning of our ecosystem. Coupled with population growth, several anthropogenic activities and environmental catastrophes have together contributed to an alarming increase in the concentration of toxic pollutants in water bodies. Diversified physiochemical conditions of water matrices, ranging from mining drainage to seawater, is the critical challenge in designing adsorbents. MXenes, a new class of 2D layered materials, are transition metal nitrides, carbides, carbonitrides or borides formed through selective etching process. MXenes are known to have high surface area and activity with biological compatibility and chemical stability and therefore are promising adsorbents and have been explored for a broad range of contaminants. This review starts with a brief about environmental contaminants followed by synthesis and modifications of MXenes. It then revolves around their so far explored adsorbing and degradation properties for different contaminants ranging from toxic metals, inorganic ions, and radionuclides to various organic pollutants, including dyes, pharmaceuticals, aromatic hydrocarbons, and pesticides, etc. Finally, we have discussed associated toxicity, secondary contamination, future trends, and challenges in ascertaining scalability and wide-range applicability of MXenes in natural environmental conditions to make them a warrior of water sustainability.


Assuntos
Poluentes Ambientais , Praguicidas , Elementos de Transição , Poluentes Químicos da Água , Corantes , Ecossistema
19.
Environ Sci Pollut Res Int ; 28(31): 41760-41771, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33788088

RESUMO

Chromite ore processing residues (COPR) are real environmental threats, leading to CrO42-, i.e., Cr (VI) leaching into groundwater. It is of serious concern as Cr (VI) is proven to be carcinogenic. Here we emphasize the application of novel and eco-friendly chitin functionalized iron-enriched hydroxyapatite nanocomposite (HAP-Fe0-Ct) in the remediation of Cr (VI)-contaminated groundwater samples collected from Khan Chandpur, India, where the level of Cr (VI) is found to be 11.7 mg/L in a complex aqueous matrix having 793 mg/L of total dissolved solids. Chitin functionality in the composite has resulted in positive zeta potential at circum-neutral pH, favoring electrostatic attraction of chromate ions and resulting in its bulk surface transport. The HAP-Fe0-Ct showed faster kinetics of removal with efficiency (qm = 13.9 ± 0.46 mg/g) for Cr (VI). The composite has shown sorption equilibrium and 100% removal of Cr (VI) within 3 h of interaction time in groundwater samples. No Cr (VI) leaching in the acid wash process at pH 3.5 also suggests chromium's strong chemisorption onto nanocomposite. During the interaction in aqueous solutions, the reduced iron (Fe0) on the nanocomposite becomes oxidized, suggesting the probable simultaneous reduction of Cr (VI) and its co-precipitation. Continuous column extraction of chromate ions was also efficient in both spiked solutions (39.7 ± 0.04 mg/g) and COPR contaminated water (13.2 ± 0.09 mg/g). Reusability up to three cycles with almost complete Cr (VI) removal may be attributed to surface protonation, new binding sites generation, and electron transfer from Fe0 core through defects. The study concludes that HAP-Fe0-Ct could be utilized for continuous Cr (VI) removal from COPR contaminated complex groundwater matrices.


Assuntos
Água Subterrânea , Nanocompostos , Poluentes Químicos da Água , Quitina , Cromatos , Cromo/análise , Durapatita , Íons , Ferro , Poluentes Químicos da Água/análise
20.
Nat Commun ; 12(1): 899, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563998

RESUMO

Analytical limitations considerably hinder our understanding of the impacts of the physicochemical properties of nanomaterials (NMs) on their biological fate in organisms. Here, using a fit-for-purpose analytical workflow, including dosing and emerging analytical techniques, NMs present in organisms are characterized and quantified across an aquatic food chain. The size and shape of gold (Au)-NMs are shown to control the number of Au-NMs attached to algae that were exposed to an equal initial concentration of 2.9 × 1011 particles mL-1. The Au-NMs undergo size/shape-dependent dissolution and agglomeration in the gut of the daphnids, which determines the size distribution of the NMs accumulated in fish. The biodistribution of NMs in fish tissues (intestine, liver, gills, and brain) also depends on NM size and shape, although the highest particle numbers per unit of mass are almost always present in the fish brain. The findings emphasize the importance of physicochemical properties of metallic NMs in their biotransformations and tropic transfers.


Assuntos
Cadeia Alimentar , Ouro/metabolismo , Nanoestruturas , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , Biotransformação , Daphnia/metabolismo , Peixes/metabolismo , Ouro/química , Microalgas/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Especificidade da Espécie , Distribuição Tecidual , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA