Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Antibiotics (Basel) ; 11(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36139937

RESUMO

In most Streptomyces species, antibiotic production is triggered in a condition of phosphate limitation, a condition that is known to be correlated with a low intracellular ATP content compared to growth in a condition of phosphate proficiency. This observation suggests that a low ATP content might be a direct trigger of antibiotic biosynthesis. In order to test this hypothesis, we introduced into the model strain Streptomyces lividans, a functional and a non-functional ATPase cloned into the replicative vector pOSV206 and expressed under the control of the strong ErmE* promoter. The functional ATPase was constituted by the α (AtpA), ß (AtpB) and γ (AtpD) sub-units of the native F1 part of the ATP synthase of S. lividans that, when separated from the membrane-bound F0 part, bears an ATPase activity. The non-functional ATPase was a mutated version of the latter, bearing a 12 amino acids deletion encompassing the active site of the AtpD sub-unit. S. lividans was chosen to test our hypothesis since this strain hardly produces any antibiotics. However, it possesses the same biosynthetic pathways of various specialized metabolites as S. coelicolor, a phylogenetically closely related strain that produces these metabolites in abundance. Our results demonstrated that the over-expression of the functional ATPase, but not that of its mutated version, indeed correlated with the production of the bioactive metabolites of the CDA, RED and ACT clusters. These results confirmed the long known and mysterious link existing between a phosphate limitation leading to an ATP deficit and the triggering of antibiotic biosynthesis. Based on this work and the previous published results of our group, we propose an entirely novel conception of the nature of this link.

2.
Microorganisms ; 10(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35456877

RESUMO

Actinobacteria of the genus Amycolatopsis are important for antibiotic production and other valuable biotechnological applications such as bioconversion or bioremediation. Despite their importance, tools and methods for their genetic manipulation are less developed than in other actinobacteria such as Streptomyces. We report here the use of the pSAM2 site-specific recombination system to delete antibiotic resistance cassettes used in gene replacement experiments or to create large genomic deletions. For this purpose, we constructed a shuttle vector, replicating in Escherichia coli and Amycolatopsis, expressing the integrase and the excisionase from the Streptomyces integrative and conjugative element pSAM2. These proteins are sufficient for site-specific recombination between the attachment sites attL and attR. We also constructed two plasmids, replicative in E. coli but not in Amycolatopsis, for the integration of the attL and attR sites on each side of a large region targeted for deletion. We exemplified the use of these tools in Amycolatopsis mediterranei by obtaining with high efficiency a marker-free deletion of one single gene in the rifamycin biosynthetic gene cluster or of the entire 90-kb cluster. These robust and simple tools enrich the toolbox for genome engineering in Amycolatopsis.

3.
Antibiotics (Basel) ; 10(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804592

RESUMO

In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.

4.
Sci Rep ; 9(1): 20226, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882990

RESUMO

The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring. Here, we paired in vivo and in vitro studies to complete the characterization of the bicyclomycin biosynthetic gene cluster. The construction of in-frame deletion mutants in the biosynthetic gene cluster allowed for the accumulation and identification of biosynthetic intermediates. The identity of the intermediates, which were reproduced in vitro using purified enzymes, allowed us to characterize the pathway and corroborate previous reports. Finally, we show that the putative antibiotic transporter was dispensable for the producing strain.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Genes Bacterianos/genética , Família Multigênica , Streptomyces/genética , Antibacterianos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Dicetopiperazinas/química , Hidroxilação , Modelos Químicos , Estrutura Molecular , Mutação , Streptomyces/metabolismo
5.
Nat Chem Biol ; 11(9): 721-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236937

RESUMO

Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond-forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP. All 11 previously characterized CDPSs belong to the NYH subfamily, suggesting that further special features may be yet to be discovered in the other subfamily. CDPSs synthesize a large diversity of cyclodipeptides made up of 17 proteinogenic amino acids. The identification of several CDPSs having the same specificity led us to determine specificity sequence motifs that, in combination with the phylogenetic distribution of CDPSs, provide a first step toward being able to predict the cyclodipeptides synthesized by newly discovered CDPSs. The determination of the activity of ten more CDPSs with predicted functions constitutes a first experimental validation of this predictive approach.


Assuntos
Proteínas de Bactérias/química , Dipeptídeos/química , Proteínas Fúngicas/química , Peptídeo Sintases/química , Peptídeos Cíclicos/química , Motivos de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biologia Computacional , Ciclização , Bases de Dados Genéticas , Dipeptídeos/biossíntese , Dipeptídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Expressão Gênica , Dados de Sequência Molecular , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Filogenia , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
6.
Antimicrob Agents Chemother ; 57(8): 3836-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716060

RESUMO

Spiramycins are clinically important 16-member macrolide antibiotics produced by Streptomyces ambofaciens. Biosynthetic studies have established that the earliest lactonic intermediate in spiramycin biosynthesis, the macrolactone platenolide I, is synthesized by a type I modular polyketide synthase (PKS). Platenolide I then undergoes a series of post-PKS tailoring reactions yielding the final products, spiramycins I, II, and III. We recently characterized the post-PKS glycosylation steps of spiramycin biosynthesis in S. ambofaciens. We showed that three glycosyltransferases, Srm5, Srm29, and Srm38, catalyze the successive attachment of the three carbohydrates mycaminose, forosamine, and mycarose, respectively, with the help of two auxiliary proteins, Srm6 and Srm28. However, the enzymes responsible for the other tailoring steps, namely, the C-19 methyl group oxidation, the C-9 keto group reduction, and the C-3 hydroxyl group acylation, as well as the timing of the post-PKS tailoring reactions, remained to be established. In this study, we show that Srm13, a cytochrome P450, catalyzes the oxidation of the C-19 methyl group into a formyl group and that Srm26 catalyzes the reduction of the C-9 keto group, and we propose a timeline for spiramycin-biosynthetic post-PKS tailoring reactions.


Assuntos
Antibacterianos/biossíntese , Policetídeo Sintases/química , Espiramicina/biossíntese , Streptomyces/química , Acilação , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Formaldeído/química , Inativação Gênica , Genes Bacterianos , Glucosamina/análogos & derivados , Glucosamina/química , Glicosilação , Hexosaminas/química , Macrolídeos/química , Oxirredução , Deleção de Sequência , Especificidade da Espécie , Espiramicina/química , Streptomyces/genética , Fatores de Tempo
7.
Appl Microbiol Biotechnol ; 95(6): 1553-66, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22466952

RESUMO

Streptomyces lividans senses and adjusts to a situation of Pi limitation via the expression of genes of the pho regulon controlled by the two-component system PhoR/PhoP. Interestingly, an in silico analysis of the proteins encoded by the six genes located in divergence of phoR/phoP revealed that the latter bear features often found in metalloproteins involved in the sensing/resistance to oxidative stress. We determined whether genes of this region were belonging to the pho regulon and whether the encoded proteins do play a role in the resistance to oxidative stress. For this purpose, a transcriptional analysis of these genes was carried out on the carbon and nitrogen rich medium R2YE and on a minimal medium (MM). On R2YE, the expression of the genes phoU to sco4225 was much higher than on MM and constant throughout growth. On this medium, the expression of phoU was totally PhoP-dependent whereas the expression of sco4227 and sco4226 was partially PhoP-dependent, taking place from the phoU promoter region. In contrast, on MM, the expression of sco4227 and sco4226 was PhoP-independent whereas that of phoU remained PhoP-dependent and showed, as phoR/phoP, a peak of expression at 48 h. sco4225, sco4224, and sco4223 were transcribed from their own promoter independently of PhoP in both media. The mutants of five out of six genes of the region (Δsco4226 mutant could not be obtained) grew poorly in the presence of exogenous oxidants, suggesting a role of the encoded proteins in the resistance to oxidative stress, especially on the rich medium R2YE.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Streptomyces lividans/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Estresse Oxidativo , Regulon , Streptomyces lividans/metabolismo
8.
J Bacteriol ; 192(21): 5813-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817767

RESUMO

Streptomyces ambofaciens synthesizes the macrolide antibiotic spiramycin. The biosynthetic gene cluster for spiramycin has been characterized for S. ambofaciens. In addition to the regulatory gene srmR (srm22), previously identified (M. Geistlich et al., Mol. Microbiol. 6:2019-2029, 1992), three putative regulatory genes had been identified by sequence analysis. Gene expression analysis and gene inactivation experiments showed that only one of these three genes, srm40, plays a major role in the regulation of spiramycin biosynthesis. The disruption of srm22 or srm40 eliminated spiramycin production while their overexpression increased spiramycin production. Expression analysis was performed by reverse transcription-PCR (RT-PCR) for all the genes of the cluster in the wild-type strain and in the srm22 (srmR) and srm40 deletion mutants. The results from the expression analysis, together with the ones from the complementation experiments, indicated that Srm22 is required for srm40 expression, Srm40 being a pathway-specific activator that controls most, if not all, of the spiramycin biosynthetic genes.


Assuntos
Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Espiramicina/biossíntese , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Estrutura Molecular , Família Multigênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
9.
Biochemistry ; 48(2): 346-56, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19102629

RESUMO

Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft are more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ("thermal factors") in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of glycerol kinase, the ATP molecule, may largely determine the rate of glycerol 3-phosphate production.


Assuntos
Glicerol Quinase/química , Glicerol Quinase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Enterococcus/enzimologia , Ativação Enzimática , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/isolamento & purificação , Histidina/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Transdução de Sinais , Especificidade por Substrato
10.
Microbiology (Reading) ; 153(Pt 12): 4111-4122, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18048924

RESUMO

Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Espiramicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Proteínas de Bactérias/genética , Clonagem Molecular , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Macrolídeos/metabolismo , Dados de Sequência Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Análise de Sequência de DNA , Espiramicina/química
11.
Biochemistry ; 43(2): 362-73, 2004 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-14717590

RESUMO

The first structure of a glycerol kinase from a Gram-positive organism, Enterococcus casseliflavus, has been determined to 2.8 A resolution in the presence of glycerol and to 2.5 A resolution in the absence of substrate. The substrate-induced closure of 7 degrees is significantly smaller than that reported for hexokinase, a model for substrate-mediated domain closure that has been proposed for glycerol kinase. Despite the 78% level of sequence identity and conformational similarity in the catalytic cleft regions of the En. casseliflavus and Escherichia coli glycerol kinases, remarkable structural differences have now been identified. These differences correlate well with their divergent regulatory schemes of activation by phosphorylation in En. casseliflavus and allosteric inhibition in E. coli. On the basis of our structural results, we propose a mechanism by which the phosphorylation of a histidyl residue located 25 A from the active site results in a 10-15-fold increase in the activity of the enterococcal glycerol kinase.


Assuntos
Enterococcus/enzimologia , Glicerol Quinase/química , Glicerol Quinase/metabolismo , Glicerol/química , Glicerol/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Especificidade por Substrato
12.
J Mol Microbiol Biotechnol ; 5(4): 206-15, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12867744

RESUMO

Phosphorylation and dephosphorylation at Ser-46 in HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is controlled by the bifunctional HPr kinase/phosphorylase (HprK/P). In Gram-positive bacteria, P-Ser-HPr controls (1) sugar uptake via the PTS; (2) catabolite control protein A (CcpA)-mediated carbon catabolite repression, and (3) inducer exclusion. Genome sequencing revealed that HprK/P is absent from Gram-negative enteric bacteria, but present in many other proteobacteria. These organisms also possess (1) HPr, the substrate for HprK/P; (2) enzyme I, which phosphorylates HPr at His-15, and (3) one or several enzymes IIA, which receive the phosphoryl group from P approximately His-HPr. The genes encoding the PTS proteins are often organized in an operon with HPRK. However, most of these organisms miss CcpA and a functional PTS, as enzymes IIB and membrane-integrated enzymes IIC seem to be absent. HprK/P and the rudimentary PTS phosphorylation cascade in Gram-negative bacteria must therefore carry out functions different from those in Gram-positive organisms. The gene organization in many HprK/P-containing Gram-negative bacteria as well as some preliminary experiments suggest that HprK/P might control transcription regulators implicated in cell adhesion and virulence. In alpha-proteobacteria, HPRK is located downstream of genes encoding a two-component system of the EnvZ/OmpR family. In several other proteobacteria, HPRK is organized in an operon together with genes from the RPON region of ESCHERICHIA COLI (RPON encodes a sigma54). We propose that HprK/P might control the phosphorylation state of HPr and EIIAs, which in turn could control the transcription regulators.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Bactérias Gram-Negativas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Genes Reguladores , Genoma Bacteriano , Bactérias Gram-Negativas/enzimologia , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Óperon , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Filogenia , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Transativadores/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Mol Microbiol ; 43(4): 1039-52, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11929549

RESUMO

The Bacillus subtilis glpFK operon encoding the glycerol transport facilitator (GlpF) and glycerol kinase (GlpK) is induced by glycerol-3-P and repressed by rapidly metabolizable sugars. Carbon catabolite repression (CCR) of glpFK is partly mediated via a catabolite response element cre preceding glpFK. This operator site is recognized by the catabolite control protein A (CcpA) in complex with one of its co-repressors, P-Ser-HPr or P-Ser-Crh. HPr is a component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and Crh is an HPr homologue. The hprK-encoded HPr kinase phosphorylates HPr and Crh at Ser-46. But in neither ccpA nor hprK mutants was expression of a glpF'-lacZ fusion relieved from CCR, as a second, CcpA-independent CCR mechanism implying the terminator tglpFK, whose formation is prevented by the glycerol-3-P-activated antiterminator GlpP, is operative. Deletion of tglpFK led to elevated expression of the glpF'-lacZ fusion and to partial relief from CCR. CCR completely disappeared in DeltatglpFK mutants carrying a disruption of ccpA or hprK. The tglpFK-requiring CCR mechanism seems to be based on insufficient synthesis of glycerol-3-P, as CCR of glpFK was absent in ccpA mutants growing on glycerol-3-P or synthesizing H230R mutant GlpK. In cells growing on glycerol, glucose prevents the phosphorylation of GlpK by P-His-HPr. P-GlpK is much more active than GlpK, and the absence of P~GlpK formation in DeltaptsHI strains prevents glycerol metabolism. As a consequence, only small amounts of glycerol-3-P will be formed in glycerol and glucose-exposed cells (inducer exclusion). The uptake of glycerol-3-P via GlpT provides high concentrations of this metabolite in the ccpA mutant and allows the expression of the glpF'-lacZ fusion even when glucose is present. Similarly, despite the presence of glucose, large amounts of glycerol-3-P are formed in a glycerol-exposed strain synthesizing GlpKH230R, as this mutant GlpK is as active as P-GlpK.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glicerol Quinase/genética , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Sequência de Bases , DNA Bacteriano , Proteínas de Ligação a DNA/genética , Glicerofosfatos/metabolismo , Histidina/metabolismo , Dados de Sequência Molecular , Mutagênese , Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética
14.
Microbiology (Reading) ; 145 ( Pt 11): 3195-3204, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10589728

RESUMO

Crh of Bacillus subtilis exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS). Crh can be phosphorylated by ATP at the regulatory Ser-46 and similar to P-Ser-HPr, P-Ser-Crh plays a role in carbon-catabolite repression. The sequence around the phosphorylatable Ser-46 in Crh exhibits strong similarity to the corresponding sequence of HPr of Gram-positive and a few Gram-negative bacteria. In contrast, the catalytic His-15, the site of PEP-dependent phosphorylation in HPr, is replaced with a glutamine in Crh. When Gln-15 was exchanged for a histidyl residue, in vitro PEP-dependent enzyme I-catalysed phosphorylation of the mutant Crh was observed. However, expression of the crhQ15H mutant allele did not restore growth of a ptsH deletion strain on the PTS sugars glucose, fructose or mannitol or on the non-PTS sugar glycerol. In contrast, Q15H mutant Crh could phosphorylate the transcriptional activator LevR as well as LevD, the enzyme IIA of the fructose-specific lev-PTS, which together with enzyme I, HPr and LevE forms the phosphorylation cascade regulating induction of the lev operon via LevR. As a consequence, the constitutive expression from the lev promoter observed in a (delta)ptsH strain became inducible with fructose when the crhQ15H allele was expressed in this strain.


Assuntos
Substituição de Aminoácidos , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Fosfoproteínas/fisiologia , Alelos , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Carboidratos , Meios de Cultura/química , Glicerol , Dados de Sequência Molecular , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfoproteínas/genética , Fosforilação , Alinhamento de Sequência
15.
Microbiology (Reading) ; 145 ( Pt 11): 3205-3212, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10589729

RESUMO

The genes glpK and glpF, encoding glycerol kinase and the glycerol facilitator of Thermus flavus, a member of the Thermus/Deinococcus group, have recently been identified. The protein encoded by glpK exhibited an unusually high degree of sequence identity (80-6%) when compared to the sequence of glycerol kinase from Bacillus subtilis and a similar high degree of sequence identity (64.8%) was observed when the sequences of the glycerol facilitators of the two organisms were compared. The work presented in this paper demonstrates that T. flavus is capable of taking up glycerol, that glpF and glpK are expressed constitutively and that glucose exerts a repressive effect on the expression of these genes. T. flavus was found to possess the general components of the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) enzyme I and histidine-containing protein (HPr). These proteins catalyse the phosphorylation of T. flavus glycerol kinase, which contains a histidyl residue equivalent to His-232, the site of PEP-dependent, PTS-catalysed phosphorylation in glycerol kinase of Enterococcus casseliflavus. Purified glycerol kinase from T. flavus could also be phosphorylated with enzyme I and HPr from B. subtilis. Similar to enterococcal glycerol kinases, phosphorylated T. flavus glycerol kinase exhibited an electrophoretic mobility on denaturing and non-denaturing polyacrylamide gels that is different from the electrophoretic mobility of non-phosphorylated glycerol kinase. However, in contrast to PEP-dependent phosphorylation of enterococcal glycerol kinases, which stimulated glycerol kinase activity about 10-fold, phosphorylation of T. flavus glycerol kinase caused only a slight increase in enzyme activity.


Assuntos
Proteínas de Bactérias/metabolismo , Glicerol Quinase/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Thermus/enzimologia , Sequência de Aminoácidos , Autorradiografia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/isolamento & purificação , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA