Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nutrients ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276538

RESUMO

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Assuntos
Compostos Alílicos , Anticarcinógenos , Neoplasias da Mama , Alho , Lesões Pré-Cancerosas , Humanos , Feminino , Alho/metabolismo , Antioxidantes/farmacologia , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Apoptose , Sulfetos/farmacologia , Células Epiteliais/metabolismo , Anticarcinógenos/farmacologia , Reparo do DNA , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , DNA
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255999

RESUMO

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1ß, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.


Assuntos
Compostos Alílicos , Neoplasias da Mama , Alho , Lesões Pré-Cancerosas , Sulfetos , Humanos , Feminino , Antioxidantes , Espécies Reativas de Oxigênio , Dano ao DNA , Lesões Pré-Cancerosas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Estresse Oxidativo
3.
J Biomed Res Environ Sci ; 4(8): 1268-1273, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719645

RESUMO

We describe barriers and supports for the practice of breastfeeding, with particular focus on Black and Hispanic women in the United States. We note that breastfeeding patterns reported by WIC agencies is highly variable across the country and within states. The global campaign to support breastfeeding, Baby Friendly Hospital Initiative, and its implementation in the US is described, as well as Healthy People goals and the mixture of policies across the US that provide incomplete support for breastfeeding mothers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37297592

RESUMO

Being cognizant of the pronounced health advantages of breastfeeding for both the nursing mother and her infant, the breastfeeding dyad, we examined breastfeeding rates among Floridian women who gave birth from 2012 to 2014 (N = 639,052). We investigated the associations between breastfeeding initiation and WIC-based breastfeeding support (the Special Supplemental Nutrition Program for Women, Infants, and Children), education level, and race and ethnicity. We compared the percentage of breastfeeding mothers between those in the WIC program and those who were not, and we compared breastfeeding rates across racial and ethnic groups. Consistent with previous reports, black newborns in this study were breastfed at lower rates than other racial groups, and WIC program participants were less likely to breastfeed than non-WIC program participants. However, by breaking down the data by education level and race, and ethnicity, we see a significantly increased rate of breastfeeding due to WIC participation for both Hispanic and black women with less than a high school education. Further, we assessed differences by insurance type, race, and WIC participation. In multivariable logistic regression, we showed that the WIC program has a significant positive impact on breastfeeding rates for all but white non-Hispanic mothers, independent of sociodemographic and geographic variables. We also note a trend of increasing breastfeeding rates over the study period (p-value < 0.0001), which has positive public health implications.


Assuntos
Aleitamento Materno , Assistência Alimentar , Humanos , Lactente , Recém-Nascido , Criança , Feminino , Florida , Fenômenos Fisiológicos da Nutrição do Lactente , Etnicidade , Mães
5.
Anticancer Res ; 43(6): 2393-2405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247921

RESUMO

BACKGROUND/AIM: Diallyl trisulfide (DATS) has been shown to prevent and inhibit carcinogenesis in cancer cells. We have previously shown DATS's ability to decrease the percentage of viable cells, inhibit cell migration and modulate genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) signaling. MATERIALS AND METHODS: This study aimed to compare the efficacy of DATS in tumor necrosis factor alpha (TNF-α) induced MDA-MB-231 and MDA-MB-468 cells and investigate its role in cell-death signaling via cell cycle, flow cytometry, and caspase assay. RESULTS: DATS exhibit a time-dependent accumulation of G2/M phase cells in both cell lines, with higher effects in the MDA-MB-468 for all time points. DATS's ability to decrease the percentage of viable cells in both MDA-MB-231 and MDA-MB-468 cells was shown by a significant but slight increase of early and late apoptosis in the presence of DATS compared to control. Moreover, MDA-MB-468 cells showed more sensitivity to the DATS effect, evidenced by the higher percentage of apoptosis than MDA-MB-231 cells. The caspase studies showed a significant increase in caspase 3 and 8 activity in the presence of DATS, compared to control, in both cell lines. DATS showed no significant increase in caspase 9 activity in both cell lines compared to the control. CONCLUSION: DATS-induced apoptosis in human breast cancer cells is mediated, at least in part, by cell cycle arrest and caspase activity. These findings provide information for future studies into the role of DATS in TNBC therapy and prevention.


Assuntos
Compostos Alílicos , Neoplasias de Mama Triplo Negativas , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Sulfetos/farmacologia , Apoptose , Compostos Alílicos/farmacologia , Caspases
6.
Anticancer Res ; 41(12): 5919-5933, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848446

RESUMO

BACKGROUND/AIM: Diallyl trisulfide (DATS) has been shown to prevent and inhibit breast carcinogenesis. CCL2/MCP-1 has been shown to play a significant role in breast cancer. This study explored DATS efficacy on triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS: DATS efficacy on TNF-α induced TNBC cells were examined via trypan blue exclusion test, wound-healing assay, human cytokine arrays, ELISA, and RT-PCR. RESULTS: DATS significantly induced cell death and inhibited cell migration. Expression of CCL2/MCP-1, IL-6, PDGF-BB, NT-3, and GM-CSF in TNF-α-treated cells increased. However, DATS significantly decreased the expression of CCL2/MCP-1 in TNF-α-treated MDA-MB-231 but not in MDA-MB-468 cells. DATS significantly down-regulated mRNA expression of IKBKE and MAPK8 in both cell lines, indicating a possible effect in genes involved in the NF-κB and MAPK signaling. CONCLUSION: DATS may have a role in TNBC therapy and prevention by targeting CCL2.


Assuntos
Compostos Alílicos/farmacologia , Quimiocina CCL2/biossíntese , Sulfetos/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
7.
Cancer Genomics Proteomics ; 18(6): 735-755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697066

RESUMO

BACKGROUND/AIM: Wild yam extract [Dioscorea villosa, (WYE)] is consistently lethal at low IC50s across diverse cancer-lines in vitro. Unlike traditional anti-cancer botanicals, WYE contains detergent saponins which reduce oil-water interfacial tensions causing disintegration of lipid membranes and causing cell lysis, creating an interfering variable. Here, we evaluate WYE at sub-lethal concentrations in MDA-MB-231 triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS: Quantification of saponins, membrane potential, lytic death and sub-lethal WYE changes in whole transcriptomic (WT) mRNA, miRNAs and biological parameters were evaluated. RESULTS: WYE caused 346 differentially expressed genes (DEGs) out of 48,226 transcripts tested; where up-regulated DEGS reflect immune stimulation, TNF signaling, COX2, cytokine release and cholesterol/steroid biosynthesis. Down-regulated DEGs reflect losses in cell division cycle (CDC), cyclins (CCN), cyclin-dependent kinases (CDKs), centromere proteins (CENP), kinesin family members (KIFs) and polo-like kinases (PLKs), which were in alignment with biological studies. CONCLUSION: Sub-lethal concentrations of WYE appear to evoke pro-inflammatory, steroid biosynthetic and cytostatic effects in TNBC cells.


Assuntos
Dioscorea/química , Expressão Gênica/genética , Extratos Vegetais/química , Neoplasias de Mama Triplo Negativas/dietoterapia , Humanos
8.
Biomolecules ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34572526

RESUMO

Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase ß (Pol ß) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 µM and 60 µM DAS, respectively. Co-treatment with DAS (60 µM and 600 µM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 µM DAS increased DNA Pol ß expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.


Assuntos
Compostos Alílicos/farmacologia , Mama/patologia , Carcinogênese/metabolismo , Quebras de DNA de Cadeia Dupla , Células Epiteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Benzo(a)pireno , Bromodesoxiuridina/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Polimerase beta/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Feminino , Humanos
9.
Sci Rep ; 9(1): 9412, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253835

RESUMO

Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/toxicidade , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metanfetamina/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fatores de Tempo
10.
Biomed Res Int ; 2018: 4938189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003101

RESUMO

Anthracyclines are frequently used to treat many cancers including triple negative breast cancer, which is commonly observed in African-American women (AA), and tend to be more aggressive, carry worse prognoses, and are harder to manage because they lack molecular targets. Although effective, anthracyclines use can be limited by serious side effects and eventually the development of drug resistance. In S. cerevisiae, mutants of HOM6 display hypersensitivity to doxorubicin. HOM6 is required for synthesis of threonine and interruption of the pathway leads to accumulation of the threonine intermediate L-aspartate-semialdehyde. This intermediate may synergize with doxorubicin to kill the cell. In fact, deleting HOM3 in the first step, preventing the pathway to reach the HOM6 step, rescues the sensitivity of the hom6 strain to doxorubicin. Using several S. cerevisiae strains (wild type, hom6, hom3, hom3hom6, ydj1, siz1, and msh2), we determined their sensitivity to aldehydes and to their combination with doxorubicin, cisplatin, and etoposide. Combination of formaldehyde and doxorubicin was most effective at reducing cell survival by 31-fold-39-fold (in wild type cells) relative to doxorubicin and formaldehyde alone. This effect was dose dependent on doxorubicin. Cotreatment with formaldehyde and doxorubicin also showed increased toxicity in anthracycline-resistant strains siz1 and msh2. The hom6 mutant also showed sensitivity to menadione with a 2.5-fold reduction in cell survival. The potential use of a combination of aldehydes and cytotoxic drugs could potentially lead to applications intended to enhance anthracycline-based therapy.


Assuntos
Aldeídos/farmacologia , Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Saccharomyces cerevisiae , Feminino , Humanos , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Int J Adv Res (Indore) ; 6(3): 144-152, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657945

RESUMO

Several S. cerevisiae deletion strains involving heat-shock response factors were among the most sensitive mutants identified in a previous genetic screen for doxorubicin hypersensitivity. These strains included ydj1Δ, ssz1Δ and zuo1Δ mutants. In addition, new1Δ, whose function was unknown, also displayed significant sensitivity to anthracyclines. We further investigated the basis for the sensitivity of these mutants. We determined that heat-shock could partially rescue the sensitivity of the strains to doxorubicin, including the homologous recombination mutant rad52Δ, which is sensitive to doxorubicin-mediated DNA double strand breaks (DSBs). However, none of the heat-shock response mutants were sensitive to DSBs, but were highly sensitive to reactive oxygen species (ROS) generated by quinone-ring-containing agents, such as anthracyclines and menadione. A fluorescent-based assay indicates that doxorubicin causes protein aggregation. Interestingly, the disaggregase mutant hsp104Δ is not sensitive to anthracyclines or menadione suggesting that Hsp104p does not play a role in disaggregating doxorubicin-induced protein aggregates. However New1p, which has been recently shown to be a novel disaggregase, is essential for cell viability after exposure to anthracyclines and menadione and it is not involved in thermotolerance. Our data suggest that in S. cerevisiae, doxorubicin produces protein aggregation through ROS and requires Ydj1p and New1p for resolution.

12.
J Neuroimmunol ; 286: 5-12, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26298318

RESUMO

Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04µM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09µM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10µM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10µM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate the usefulness of TQ in delaying the onset of inflammation-mediated neurodegenerative disorders involving activated microglia cells.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoquinonas/farmacologia , Microglia/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Lisina/análogos & derivados , Lisina/farmacologia , Camundongos , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , RNA Mensageiro/metabolismo
13.
Am J Cancer Res ; 5(1): 191-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25628930

RESUMO

2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP) is a dietary mutagenic carcinogen that has been shown not only to induce the formation of DNA adducts, but is capable of inducing tumors in the colon, mammary, and prostate glands. The normal development and maturation of the prostate gland, as well as early progression of prostate cancer, is dependent on androgens acting on the androgen receptor (AR). The actual mechanism by which PhIP interacts with our biological system and its potential interaction at the AR has yet to be fully defined. Here, we describe our work in evaluating the molecular events associated with PhIP-mediated disruption of AR function in LNCaP human prostate cancer cells. We demonstrate, by molecular docking simulation, that PhIP and its metabolite can bind to the ligand-binding domain (LBD). The binding competes with dihydrotestosterone (DHT) in the native AR binding cavity of the receptor. In vitro assays show that PhIP increase AR protein expression in LNCaP cells and alters its responsiveness through PSA protein and mRNA expression. We propose that the mechanism for the tissue-specific carcinogenicity seen in the rat prostate tumors and the presumptive human prostate cancer associated with the consumption of well-done meat may be mediated by this receptor activation. Our results indicate that PhIP may play an important role in modifications of AR function.

14.
Biologics ; 8: 269-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484574

RESUMO

The SWI/SNF chromatin-remodeling complex plays an essential role in several cellular processes including cell proliferation, differentiation, and DNA repair. Loss of normal function of the SWI/SNF complex because of mutations in its subunits correlates with tumorigenesis in humans. For many of these cancers, cytotoxic chemotherapy is the primary, and sometimes the only, therapeutic alternative. Among the antineoplastic agents, anthracyclines are a common treatment option. Although effective, resistance to these agents usually develops and serious dose-related toxicity, namely, chronic cardiotoxicity, limits its use. Previous work from our laboratory showed that a deletion of the SWI/SNF factor SNF2 resulted in hypersensitivity to doxorubicin. We further investigated the contribution of other chromatin remodeling complex components in the response to cytotoxic chemotherapy. Our results indicate that, of the eight SWI/SNF strains tested, snf2, taf14, and swi3 were the most sensitive and displayed distinct sensitivity to different cytotoxic agents, while snf5 displayed resistance. Our experimental results indicate that the SWI/SNF complex plays a critical role in protecting cells from exposure to cytotoxic chemotherapy and other cytotoxic agents. Our findings may prove useful in the development of a strategy aimed at targeting these genes to provide an alternative by hypersensitizing cancer cells to chemotherapeutic agents.

15.
Anticancer Res ; 34(6): 2763-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922637

RESUMO

Monocyte chemotactic protein-1 (MCP-1/CCL2) is released by tumor tissues, serving as a potent chemokine enabling directional homing of mononuclear cells to tumor tissue, which subsequently differentiate into tumor-associated macrophages (TAMs) via TGFß1 signaling. TAMs readily invade tumor tissue and continue to synthesize pro-oncogenic proteins including tumor growth factors, matrix proteases (metastasis), angiogenic factors (neovascularization) and CCL2. Substances, which can attenuate or block the initial release of CCL2 have been shown to prevent cancer-associated inflammative pro-oncogenic processes. In the current study, we investigated the effects of the organosulfur compound diallyl disulfide (DADS), a natural constituent of Allium sativum (garlic) on suppression of TNFα-induced release of CCL2 from triple-negative human breast tumor (MDA-MB-231) cells. Using an initial adipokine/chemokine protein panel microarray, the data show a predominant expression profile in resting/untreated MDA-MB-231 cells for sustained release of IL6, IL8, plasminogen Activator Inhibitor 1 and TIMP1/2. Treatment with TNFα (40 ng/ml) had no effect on many of these molecules, with a single major elevation in release of CCL2 (~1,300-fold up-regulation). TNFα-induced CCL2 release was reversed by a sub-lethal concentration of DADS (100 µM), evident in antibody based assays. These findings provide evidence to support another avenue of anticancer/chemopreventative properties attributable to garlic constituents through immunomodulation.


Assuntos
Compostos Alílicos/farmacologia , Antineoplásicos/farmacologia , Quimiocina CCL2/metabolismo , Dissulfetos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adipocinas/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Alho/química , Humanos , Análise Serial de Proteínas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/farmacologia
16.
Nutr Cancer ; 64(7): 1112-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23006051

RESUMO

Diallyl disulfide (DADS), a garlic organosulfur compound, has been researched as a cancer prevention agent; however, the role of DADS in the suppression of cancer initiation in nonneoplastic cells has not been elucidated. To evaluate DADS inhibition of early carcinogenic events, MCF-10A cells were pretreated (PreTx) with DADS followed by the ubiquitous carcinogen benzo(a)pyrene (BaP), or cotreated (CoTx) with DADS and BaP for up to 24 h. The cells were evaluated for changes in cell viability/proliferation, cell cycle, induction of peroxide formation, and DNA damage. BaP induced a statistically significant increase in cell proliferation at 6 h, which was attenuated with DADS CoTx. PreTx with 6 and 60 µM of DADS inhibited BaP-induced G2/M arrest by 68% and 78%, respectively. DADS, regardless of concentration or method, inhibited BaP-induced extracellular aqueous peroxide formation within 24 h. DADS attenuated BaP-induced DNA single-strand breaks at all time points through both DADS Pre- and CoTx, with significant inhibition for all treatments sustained after 6 h. DADS was effective in inhibiting BaP-induced cell proliferation, cell cycle transitions, reactive oxygen species, and DNA damage in a normal cell line, and thus may inhibit environmentally induced breast cancer initiation.


Assuntos
Compostos Alílicos/farmacologia , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Dissulfetos/farmacologia , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioprevenção , Dano ao DNA/efeitos dos fármacos , Alho/química , Humanos , Espécies Reativas de Oxigênio/metabolismo
17.
Food Chem Toxicol ; 50(7): 2524-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525868

RESUMO

Diallyl trisulfide (DATS) is a garlic organosulfide that is toxic to cancer cells, however, little is known about its effect in the initiation phase of carcinogenesis. We sought to determine whether DATS could inhibit the carcinogen, benzo(a)pyrene (BaP), from inducing precancerous activity, in vitro. MCF-10A cells were either pre-treated (PreTx) or concurrently treated (CoTx) with 1 µM BaP, and 6 or 60 µM DATS for up to 24h. The DATS 6 and 60 µM CoTx inhibited BaP-induced cell proliferation by an average of 71.1% and 120.8%, respectively, at 6h. The 60 µM DATS pretreatment decreased BaP-induced G2/M cell cycle transition by 127%, and reduced the increase in cells in the S-phase by 42%; whereas 60 µM DATS CoTx induced a 177% increase in cells in G1. DATS effectively inhibited (P<0.001) BaP-induced peroxide formation by at least 54%, which may have prevented the formation of BaP-induced DNA strand breaks. In this study, we reveal mechanisms involved in DATS inhibition of BaP-induced carcinogenesis, including inhibition of cell proliferation, regulation of cell cycle, attenuation of ROS formation, and inhibition of DNA damage. At the doses evaluated, DATS appears to be an effective attenuator of BaP-induced breast carcinogenesis, in vitro.


Assuntos
Compostos Alílicos/farmacologia , Benzo(a)pireno/antagonistas & inibidores , Transformação Celular Neoplásica , Sulfetos/farmacologia , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA , Citometria de Fluxo , Humanos
18.
Toxicol In Vitro ; 25(8): 1733-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21911053

RESUMO

Cadmium is non-essential, carcinogenic and multitarget pollutant in the environment. Monoisoamyl-2,3-dimercaptosuccinate (MiADMS) is an ester of dimercaptosuccinic acid that acts as an antioxidant and chelator. Therefore, the mitigative action of MiADMS on viability, morphology, antioxidative enzymes and cell cycle were studied on rat liver cells treated with cadmium chloride (CdCl2). The cells were treated with 150 µM CdCl2 alone or cotreated with 300 µM MiADMS (concurrently, 2 h or 4 h post-CdCl2 treatment) for 24 h. The viability of cells treated with CdCl2 alone was decreased in comparison to the control cells. Cotreatment with MiADMS resulted in an increase in cell viability in comparison to the CdCl2 alone treated cells. The CdCl2 treatment altered the morphological shape of the cells, while cotreatment with MiADMS restored the shape. Antioxidative enzymes activities were decreased in the cells treated with CdCl2 alone, while MiADMS cotreatment resulted in an increase in enzyme activities. The CdCl2 arrested the cells in S phase of the cell cycle. Cotreatment with MiADMS alleviated cell cycle arrest by shifting to G1 phase. These results clearly show the mitigative action of MiADMS on CdCl2 toxicity and may suggest that MiADMS can be used as an antidote against cadmium.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Quelantes/farmacologia , Poluentes Ambientais/toxicidade , Hepatócitos/efeitos dos fármacos , Succímero/análogos & derivados , Animais , Catalase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hepatócitos/enzimologia , Hepatócitos/patologia , Ratos , Fase S/efeitos dos fármacos , Succímero/farmacologia
19.
Int J Mol Med ; 27(2): 243-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125209

RESUMO

In this study, the protective effects of N-acetylcysteine (NAC), a precursor of reduced glutathione, were studied by measuring the viability, the levels of antioxidant enzymes, and by analyzing the cell cycle in cadmium (Cd)-treated rat liver cells. The cells were treated with 150 µM CdCl2 alone or co-treated with 150 µM CdCl2 and 5 mM NAC (2 h pre-, simultaneous or 2 h post-treatment) for 24 h. The viability of the cells treated with 150 µM CdCl2 alone decreased to 40.1%, while that of the cells co-treated with 5 mM NAC (pre-, simultaneous and post-treatment) significantly increased to 83.7, 86.2 and 83.7%, respectively in comparison to the control cells (100%). The catalase enzyme level decreased to undetectable level in the cells treated with CdCl2 alone, while it significantly increased in the co-treated cells (pre-, simultaneous and post-treatment) to 40.1, 34.3 and 13.2%, respectively. In the cells treated with CdCl2 alone, the glutathione peroxidase enzyme level decreased to 78.3%, while it increased in the co-treated cells (pre-, simultaneous, and post-treatment) to 84.5, 83.3 and 87.9%, respectively. The glutathione reductase enzyme level decreased to 56.1% in the cells treated with cadmium alone, but significantly increased in the cells co treated with NAC (pre-, simultaneous and post-treatment) to 79.5, 78.5 and 78.2%, respectively. Cd caused cell cycle arrest at the S and G2/M phases. The co-treatment with NAC inhibited cell cycle arrest by shifting the cells to the G1 phase. These results clearly show the protective effects of NAC against Cd-induced damage in rat liver cells.


Assuntos
Acetilcisteína/farmacologia , Hepatócitos/efeitos dos fármacos , Animais , Cádmio/toxicidade , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Ratos
20.
Neurochem Res ; 35(9): 1413-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20508987

RESUMO

Impaired mitochondrial function in glial and neuronal cells in the substantia nigra is one of the most likely causes of Parkinson's disease. In this study, we investigated the protective role of glucose on early key events associated with MPP(+)-induced changes in rat C6 astroglial cells. Studies were carried out to examine alterations in mitochondrial respiratory status, membrane potential, glutathione levels, and cell cycle phase inhibition at 48 h in 2 and 10 mM glucose in media. The results obtained suggest that MPP(+) caused significant cell death in 2 mM glucose with LC(50) 0.14 +/- 0.005 mM, while 10 mM glucose showed highly significant protection against MPP(+) toxicity with LC(50) 0.835 +/- 0.03 mM. This protection was not observed with cocaine, demonstrating its compound specificity. MPP(+) in 2 mM glucose decreased significantly mitochondrial respiration, membrane potential and glutathione levels in a dose dependent manner, while 10 mM glucose significantly restored them. MPP(+) in 2 mM glucose arrested the cells at G0/G1 and G2/M phases, demonstrating its dual inhibitory effects. However, in 10 mM glucose, MPP(+) caused G0/G1 arrest only. In summary, the results suggest that loss of cell viability in 2 mM glucose group with MPP(+) treatments was due to mitochondrial dysfunction caused by multilevel mechanism, involving significant decrease in mitochondrial respiration, membrane potential, glutathione levels, and dual arrest of cell phases, while 10 mM glucose rescued astroglial cells from MPP(+) toxicity by significant maintenance of these factors.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Astrócitos/efeitos dos fármacos , Glucose/metabolismo , Herbicidas/farmacologia , Mitocôndrias , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Respiração Celular/efeitos dos fármacos , Glutationa/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA