Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Stem Cells Int ; 2016: 5702873, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777588

RESUMO

Liver progenitor cells (LPCs) can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC), indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL), and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

2.
Cell Stem Cell ; 16(4): 426-38, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25772072

RESUMO

Hematopoietic stem cells (HSCs) possess unique gene expression programs that enforce their identity and regulate lineage commitment. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression and cell fate decisions, although their functions in HSCs are unclear. Here we profiled the transcriptome of purified HSCs by deep sequencing and identified 323 unannotated lncRNAs. Comparing their expression in differentiated lineages revealed 159 lncRNAs enriched in HSCs, some of which are likely HSC specific (LncHSCs). These lncRNA genes share epigenetic features with protein-coding genes, including regulated expression via DNA methylation, and knocking down two LncHSCs revealed distinct effects on HSC self-renewal and lineage commitment. We mapped the genomic binding sites of one of these candidates and found enrichment for key hematopoietic transcription factor binding sites, especially E2A. Together, these results demonstrate that lncRNAs play important roles in regulating HSCs, providing an additional layer to the genetic circuitry controlling HSC function.


Assuntos
Células da Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética
3.
Cell Stem Cell ; 15(3): 350-364, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25130491

RESUMO

Epigenetic regulation of hematopoietic stem cells (HSCs) ensures lifelong production of blood and bone marrow. Recently, we reported that loss of de novo DNA methyltransferase Dnmt3a results in HSC expansion and impaired differentiation. Here, we report conditional inactivation of Dnmt3b in HSCs either alone or combined with Dnmt3a deletion. Combined loss of Dnmt3a and Dnmt3b was synergistic, resulting in enhanced HSC self-renewal and a more severe block in differentiation than in Dnmt3a-null cells, whereas loss of Dnmt3b resulted in a mild phenotype. Although the predominant Dnmt3b isoform in adult HSCs is catalytically inactive, its residual activity in Dnmt3a-null HSCs can drive some differentiation and generates paradoxical hypermethylation of CpG islands. Dnmt3a/Dnmt3b-null HSCs displayed activated ß-catenin signaling, partly accounting for the differentiation block. These data demonstrate distinct roles for Dnmt3b in HSC differentiation and provide insights into complementary de novo methylation patterns governing regulation of HSC fate decisions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/enzimologia , Animais , Apoptose , Diferenciação Celular/genética , Proliferação de Células , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Isoenzimas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/metabolismo , Neoplasias/patologia , beta Catenina/metabolismo , DNA Metiltransferase 3B
4.
Cell Stem Cell ; 14(5): 673-88, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24792119

RESUMO

To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-ß signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.


Assuntos
Epigenômica/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Imunoprecipitação da Cromatina , Masculino , Camundongos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Am J Pathol ; 184(3): 631-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389165

RESUMO

Dry eye in humans displays increased prevalence in the aged and in women. Here, we investigated the ocular surfaces and lacrimal glands of aged mice of both sexes. We surveyed three different ages [young, middle-aged (6 to 9 months), and elderly] by investigating severity markers of dry eye disease (DED). We observed an age-dependent dry eye phenotype as early as 6 to 9 months: increased corneal surface irregularity, increased corneal barrier disruption, conjunctival CD4(+) T-cell infiltration, and loss of mucin-filled goblet cells. Expression of interferon-γ, IL-17 mRNA transcripts was increased in the conjunctiva and IL-17A, matrix metallopeptidase 9, and chemokine ligand 20 in the corneas of elderly mice. Elderly male mice develop more of a skewed response of type 1 T helper cell, whereas female mice have a bias toward type 17 T helper cell in the conjunctiva. In the lacrimal gland, an increase in CD4(+) and CD8(+) T cells and B cells and a decrease in activated dendritic cells were observed. Adoptive transfer of CD4(+) T cells isolated from elderly mice transferred DED into young immunodeficient recipients, which was more pronounced from male donors. Our findings show the development of DED in aging mice. Pathogenic CD4(+) T cells that develop with aging are capable of transferring DED from older mice to naive immunodeficient recipients. Taken together, our results indicate that age-related autoimmunity contributes to development of DED with aging.


Assuntos
Envelhecimento , Autoimunidade , Dacriocistite/patologia , Síndromes do Olho Seco/patologia , Transferência Adotiva , Envelhecimento/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Córnea/patologia , Dacriocistite/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Olho/patologia , Feminino , Células Caliciformes/metabolismo , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Aparelho Lacrimal/citologia , Aparelho Lacrimal/imunologia , Aparelho Lacrimal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Índice de Gravidade de Doença , Células Th1/metabolismo , Células Th17/metabolismo
6.
Nat Genet ; 46(1): 17-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270360

RESUMO

Gains and losses in DNA methylation are prominent features of mammalian cell types. To gain insight into the mechanisms that promote shifts in DNA methylation and contribute to changes in cell fate, including malignant transformation, we performed genome-wide mapping of 5-methylcytosine and 5-hydroxymethylcytosine in purified mouse hematopoietic stem cells. We discovered extended regions of low methylation (canyons) that span conserved domains frequently containing transcription factors and are distinct from CpG islands and shores. About half of the genes in these methylation canyons are coated with repressive histone marks, whereas the remainder are covered by activating histone marks and are highly expressed in hematopoietic stem cells (HSCs). Canyon borders are demarked by 5-hydroxymethylcytosine and become eroded in the absence of DNA methyltransferase 3a (Dnmt3a). Genes dysregulated in human leukemias are enriched for canyon-associated genes. The new epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Leucemia/genética , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Sequência Conservada , Ilhas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Bases de Dados Genéticas , Epigênese Genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
7.
Mech Ageing Dev ; 134(9): 407-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007921

RESUMO

Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.


Assuntos
Longevidade , Receptores Citoplasmáticos e Nucleares/fisiologia , Xenobióticos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dimerização , Feminino , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Hormônio do Crescimento/metabolismo , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptor X Retinoide alfa/metabolismo , Ativação Transcricional
8.
Mech Ageing Dev ; 133(7): 467-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22704917

RESUMO

Aging is associated with a loss of cellular homeostasis, a decline in physiological function and an increase in various pathologies. Employing a meta-analysis, hepatic gene expression profiles from four independent mouse aging studies were interrogated. There was little overlap in the number of genes or canonical pathways perturbed, suggesting that independent study-specific factors may play a significant role in determining age-dependent gene expression. However, 43 genes were consistently altered during aging in three or four of these studies, including those that (1) exhibited progressively increased expression starting from 12 months of age, (2) exhibited similar expression changes in models of progeria at young ages and dampened or no changes in old longevity mouse models, (3) were associated with inflammatory tertiary lymphoid neogenesis (TLN) associated with formation of ectopic lymphoid structures observed in chronically inflamed tissues, and (4) overlapped with genes perturbed by aging in brain, muscle, and lung. Surprisingly, around half of the genes altered by aging in wild-type mice exhibited similar expression changes in adult long-lived mice compared to wild-type controls, including those associated with intermediary metabolism and feminization of the male-dependent gene expression pattern. Genes unique to aging in wild-type mice included those linked to TLN.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Fígado/metabolismo , Transcriptoma/fisiologia , Animais , Biomarcadores/metabolismo , Inflamação/metabolismo , Masculino , Camundongos
9.
Nat Genet ; 44(1): 23-31, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138693

RESUMO

Loss of the de novo DNA methyltransferases Dnmt3a and Dnmt3b in embryonic stem cells obstructs differentiation; however, the role of these enzymes in somatic stem cells is largely unknown. Using conditional ablation, we show that Dnmt3a loss progressively impairs hematopoietic stem cell (HSC) differentiation over serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Dnmt3a-null HSCs show both increased and decreased methylation at distinct loci, including substantial CpG island hypermethylation. Dnmt3a-null HSCs upregulate HSC multipotency genes and downregulate differentiation factors, and their progeny exhibit global hypomethylation and incomplete repression of HSC-specific genes. These data establish Dnmt3a as a critical participant in the epigenetic silencing of HSC regulatory genes, thereby enabling efficient differentiation.


Assuntos
Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Células-Tronco Hematopoéticas/fisiologia , Animais , Divisão Celular , DNA Metiltransferase 3A , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação
10.
J Gerontol A Biol Sci Med Sci ; 66(9): 944-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21719609

RESUMO

Our previous study on immune-related changes in the aged liver described immune cell infiltration and elevation of inflammation with age. Levels of interferon (IFN)-γ, a known cell cycle inhibitor, were elevated in the aging liver. Here, we determine the role played by IFN-γ in the delayed regenerative response observed in the aged livers. We observed elevated IFN signaling in both aged hepatocytes and regenerating livers post-partial hepatectomy. In vivo deletion of the major IFN-γ producers-the macrophages and the natural killer cells, leads to a reduction in the IFN-γ levels accompanied with the restoration of the DNA synthesis kinetics in the aged livers. Eighteen-month-old IFN-γ-/- mice livers, upon resection, exhibited an earlier entry into the cell cycle compared with age-matched controls. Thus, our study strongly suggests that an age-related elevation in inflammatory conditions in the liver often dubbed as "inflammaging" has a detrimental effect on the regenerative response.


Assuntos
Envelhecimento/imunologia , Interferon gama/fisiologia , Regeneração Hepática , Fígado/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Ciclo Celular , Imunidade Inata , Interferon gama/genética , Células Matadoras Naturais/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Receptores Toll-Like/fisiologia
11.
Stem Cells Dev ; 20(12): 2177-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21361791

RESUMO

The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.


Assuntos
Envelhecimento/metabolismo , Antígeno CD24/metabolismo , Hepatócitos/citologia , Fígado/citologia , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Agregação Celular , Diferenciação Celular , Proliferação de Células , Separação Celular , Citometria de Fluxo , Regulação da Expressão Gênica , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Hepatócitos/transplante , Hidrolases/metabolismo , Células de Kupffer/citologia , Células de Kupffer/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridinas , Cromossomos Sexuais/metabolismo , Células-Tronco/metabolismo
12.
Hepatology ; 52(3): 1023-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20564353

RESUMO

UNLABELLED: The p53 family of proteins regulates the expression of target genes that promote cell cycle arrest and apoptosis, which may be linked to cellular growth control as well as tumor suppression. Within the p53 family, p53 and the transactivating p73 isoform (TA-p73) have hepatic-specific functions in development and tumor suppression. Here, we determined TA-p73 interactions with chromatin in the adult mouse liver and found forkhead box O3 (Foxo3) to be one of 158 gene targets. Global profiling of hepatic gene expression in the regenerating liver versus the quiescent liver revealed specific, functional categories of genes regulated over the time of regeneration. Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative cellular proliferation. p53 and TA-p73 bind a Foxo3 p53 response element (p53RE) and maintain active expression in the quiescent liver. During regeneration of the liver, the binding of p53 and TA-p73, the recruitment of acetyltransferase p300, and the active chromatin structure of Foxo3 are disrupted along with a loss of Foxo3 expression. In agreement with the loss of Foxo3 transcriptional activation, a decrease in histone activation marks (dimethylated histone H3 at lysine 4, acetylated histone H3 at lysine 14, and acetylated H4) at the Foxo3 p53RE was detected after partial hepatectomy in mice. These parameters of Foxo3 regulation are reestablished with the completion of liver growth and regeneration and support a temporary suspension of p53 and TA-p73 regulatory functions in normal cells during tissue regeneration. p53-dependent and TA-p73-dependent activation of Foxo3 was also observed in mouse embryonic fibroblasts and in mouse hepatoma cells overexpressing p53, TA-p73alpha, and TA-p73beta isoforms. CONCLUSION: p53 and p73 directly bind and activate the expression of the Foxo3 gene in the adult mouse liver and murine cell lines. p53, TA-p73, and p300 binding and Foxo3 expression decrease during liver regeneration, and this suggests a critical growth control mechanism mediated by these transcription factors in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regeneração Hepática/fisiologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Forkhead Box O3 , Hepatectomia , Histonas/metabolismo , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores de Transcrição de p300-CBP/metabolismo
13.
Mol Cell Biol ; 29(14): 3867-80, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19398579

RESUMO

Aging reduces the regenerative capacities of many tissues. In this paper, we show a critical role of the glycogen synthase kinase 3beta (GSK3beta)-cyclin D3 pathway in the loss of the regenerative capacity of the liver. In young animals, high levels of growth hormone (GH) increase expression of GSK3beta, which associates with cyclin D3 and triggers degradation of cyclin D3. In livers of old mice, the GSK3beta promoter is repressed by C/EBPbeta-histone deacetylase 1 (HDAC1) complexes, leading to the reduction of GSK3beta. The treatment of old mice with GH increases expression of GSK3beta via removal of the C/EBPbeta-HDAC1 complexes from the GSK3beta promoter. We found that the GSK3beta-cyclin D3 pathway is also altered in young GH-deficient Little mice and that treatment of Little mice with GH corrects the GSK3beta-cyclin D3 pathway. We present evidence that GSK3beta regulates liver proliferation by controlling growth-inhibitory activity of C/EBPalpha. The downregulation of GSK3beta in young mice inhibits liver proliferation after partial hepatectomy via the cyclin D3-C/EBPalpha pathway, while the elevation of GSK3beta in old mice accelerates liver proliferation. Thus, this paper shows that GSK3beta is a critical regulator of liver proliferation and that the reduction of GSK3beta with age causes the loss of regenerative capacities of the liver.


Assuntos
Envelhecimento/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Regeneração Hepática/fisiologia , Envelhecimento/genética , Animais , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular , Proliferação de Células , Ciclina D3 , Ciclinas/genética , Ciclinas/metabolismo , Primers do DNA/genética , Inativação Gênica , Quinase 3 da Glicogênio Sintase/deficiência , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/uso terapêutico , Hepatectomia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Desacetilase 1 , Histona Desacetilases/metabolismo , Humanos , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Recombinantes/farmacologia
14.
CSH Protoc ; 2008: pdb.prot4347, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356879

RESUMO

INTRODUCTIONCells grown in monolayer proliferate to a confluent state in which the cells cover the growth surface of the flask. Some cells can be maintained in this plateau phase of growth for days to weeks, while others require trypsinization and subculture to survive. Cell lines requiring trypsinization usually do not display contact inhibition of growth and continue to proliferate. Ultimately, they peel off the surface of the flasks and are difficult to disperse and replate. This protocol describes a procedure for the subculture of mammalian cells in monolayer culture.

15.
Stem Cells ; 25(10): 2476-87, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17641245

RESUMO

The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Antígenos de Diferenciação/biossíntese , Antígenos de Superfície/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Fígado/embriologia , Células-Tronco Multipotentes/metabolismo , Transcrição Gênica , Animais , Antígenos de Diferenciação/genética , Antígenos de Superfície/genética , Ductos Biliares/citologia , Ductos Biliares/embriologia , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Di-Hidropiridinas/farmacologia , Hepatócitos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Multipotentes/efeitos dos fármacos , Receptores Notch/genética , Receptores Notch/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
16.
CSH Protoc ; 2007: pdb.prot4346, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357091

RESUMO

INTRODUCTIONThis protocol describes the growth and passaging of mammalian cells in suspension culture using a simple dilution procedure. In situations in which total replacement of medium is desired, the cells can be gently pelleted by centrifugation and resuspended in the appropriate medium.

17.
CSH Protoc ; 2007: pdb.prot4769, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357107

RESUMO

INTRODUCTIONVarious manipulations of cells, including passaging, freezing, and dissociation from primary tissue, can result in cell death. To determine the number of surviving cells in a population, exclusion of the dye trypan blue can be used. Normal healthy cells are able to exclude the dye, but trypan blue will diffuse into cells in which membrane integrity has been lost. This dye-exclusion method provides a rough estimate of cell viability and often does not distinguish within a 10%-20% difference. Additionally, cells that exclude dye are not necessarily capable of attachment and prolonged survival or proliferation.

18.
J Gerontol A Biol Sci Med Sci ; 62(12): 1319-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18166681

RESUMO

We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dt(max), and -dP/dt(max), was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dt(max) nor -dP/dt(max) declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dt(max) and -dP/dt(max) versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Camundongos/fisiologia , Animais , Peso Corporal , Nanismo/fisiopatologia , Ecocardiografia , Teste de Esforço , Fator de Crescimento Insulin-Like I/análise
19.
Hepatology ; 43(2): 276-86, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16440369

RESUMO

We previously demonstrated that formation of complexes between the DNA-binding domains of hepatocyte nuclear factor 6 (HNF6) and forkhead box a2 (Foxa2) proteins stimulated Foxa2 transcriptional activity. Here, we used HepG2 cell cotransfection assays to demonstrate that HNF6 transcriptional activity was stimulated by CCAAT/enhancer-binding protein alpha (C/EBPalpha), but not by the related C/EBPbeta or C/EBPdelta proteins. Formation of the C/EBPalpha-HNF6 protein complex required the HNF6 cut domain and the C/EBPalpha activation domain (AD) 1/AD2 sequences. This C/EBPalpha-HNF6 transcriptional synergy required both the N-terminal HNF6 polyhistidine and serine/threonine/proline box sequences, as well as the C/EBPalpha AD1/AD2 sequences, the latter of which are known to recruit the CREB binding protein (CBP) transcriptional coactivator. Consistent with these findings, adenovirus E1A-mediated inhibition of p300/CBP histone acetyltransferase activity abrogated C/EBPalpha-HNF6 transcriptional synergy in cotransfection assays. Co-immunoprecipitation assays with liver protein extracts demonstrate an association between the HNF6 and C/EBPalpha transcription factors and the CBP coactivator protein in vivo. Furthermore, chromatin immunoprecipitation assays with hepatoma cells demonstrated that increased levels of both C/EBPalpha and HNF6 proteins were required to stimulate association of these transcription factors and the CBP coactivator protein with the endogenous mouse Foxa2 promoter region. In conclusion, formation of the C/EBPalpha-HNF6 protein complex stimulates recruitment of the CBP coactivator protein for expression of Foxa2, a transcription factor critical for regulating expression of hepatic gluconeogenic genes during fasting.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteína de Ligação a CREB/metabolismo , Fator 6 Nuclear de Hepatócito/fisiologia , Sequência de Aminoácidos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Fator 3-beta Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica/fisiologia , Transfecção
20.
CSH Protoc ; 2006(1)2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485722
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA