Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 5(36): 22861-22873, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954135

RESUMO

The suitability of multication doping to stabilize the disordered Fd3̅m structure in a spinel is reported here. In this work, LiNi0.3Cu0.1Fe0.2Mn1.4O4 was synthesized via a sol-gel route at a calcination temperature of 850 °C. LiNi0.3Cu0.1Fe0.2Mn1.4O4 is evaluated as positive electrode material in a voltage range between 3.5 and 5.3 V (vs Li+/Li) with an initial specific discharge capacity of 126 mAh g-1 at a rate of C/2. This material shows good cycling stability with a capacity retention of 89% after 200 cycles and an excellent rate capability with the discharge capacity reaching 78 mAh g-1 at a rate of 20C. In operando X-ray diffraction (XRD) measurements with a laboratory X-ray source between 3.5 and 5.3 V at a rate of C/10 reveal that the (de)lithiation occurs via a solid-solution mechanism where a local variation of lithium content is observed. A simplified estimation based on the in operando XRD analysis suggests that around 17-31 mAh g-1 of discharge capacity in the first cycle is used for a reductive parasitic reaction, hindering a full lithiation of the positive electrode at the end of the first discharge.

2.
ACS Appl Mater Interfaces ; 12(12): 13852-13868, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32167270

RESUMO

Lithium- and manganese-rich transition-metal oxide (LMR-NMC) electrodes have been designed either as heterostructures of the primary components ("composite") or as core-shell structures with improved electrochemistry reported for both configurations when compared with their primary components. A detailed electrochemical and structural investigation of the 0.5Li2MnO3-0.5LiNi0.5Mn0.3Co0.2O2 composite and core-shell structured positive electrode materials is reported. The core-shell material shows better overall electrochemical performance compared to its corresponding composite material. While both configurations gave the same initial charge capacity of ∼300 mAh/g when cycled at a rate of 10 mA/g at 25 °C, the core-shell sample gives a discharge capacity of 232 mAh/g compared to 208 mAh/g delivered by the composite sample. Also, the core-shell sample gave better rate capability and a smaller first-cycle irreversible capacity loss than the composite sample. The improved performance of the core-shell material is attributed to its lower surface reactivity and limited structural change since the more stable Li2MnO3 shell screens the more reactive Ni-rich core material from interacting with either air or electrolyte at high potentials, thereby preventing electrode surface modification. In situ X-ray diffraction correlated with electrochemical data revealed that the composite sample shows stronger volumetric changes in the lattice parameters during charging to 4.8 V. In addition, X-ray absorption spectroscopy showed an incomplete Ni reduction process after the first discharge for the composite sample. From these results, it was shown that this leads to a more severe degradation in the composite material that affects Li+ intercalation in the subsequent discharge, thereby resulting in its poorer performance. Furthermore, to confirm these results, another LMR-NMC material with a different composition (having a Ni-poor core)-0.5Li2MnO3-0.5LiNi0.33Mn0.33Co0.33O2-was investigated. The core-shell structured positive electrode material also gave an improved electrochemical performance compared to the corresponding composite positive electrode material. These results show that the core-shell configuration could effectively be used to improve the performance of the LMR-NMC materials to enable future high-energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA