Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35902133

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy. Modular CAR T cells indirectly binding the tumor antigen through CAR-adaptor molecules have the potential to reduce adverse events and to overcome antigen heterogeneity. We hypothesized that a platform utilizing unique traits of clinical grade antibodies for selective CAR targeting would come with significant advantages. Thus, we developed a P329G-directed CAR targeting the P329G mutation in the Fc part of tumor-targeting human antibodies containing P329G L234A/L235A (LALA) mutations for Fc silencing. METHODS: A single chain variable fragment-based second generation P329G-targeting CAR was retrovirally transduced into primary human T cells. These CAR T cells were combined with IgG1 antibodies carrying P329G LALA mutations in their Fc part targeting epidermal growth factor receptor (EGFR), mesothelin (MSLN) or HER2/neu. Mesothelioma, pancreatic and breast cancer cell lines expressing the respective antigens were used as target cell lines. Efficacy was evaluated in vitro and in vivo in xenograft mouse models. RESULTS: Unlike CD16-CAR T cells, which bind human IgG in a non-selective manner, P329G-targeting CAR T cells revealed specific effector functions only when combined with antibodies carrying P329G LALA mutations in their Fc part. P329G-targeting CAR T cells cannot be activated by an excess of human IgG. P329G-directed CAR T cells combined with a MSLN-targeting P329G-mutated antibody mediated pronounced in vitro and in vivo antitumor efficacy in mesothelioma and pancreatic cancer models. Combined with a HER2-targeting antibody, P329G-targeting CAR T cells showed substantial in vitro activation, proliferation, cytokine production and cytotoxicity against HER2-expressing breast cancer cell lines and induced complete tumor eradication in a breast cancer xenograft mouse model. The ability of the platform to target multiple antigens sequentially was shown in vitro and in vivo. CONCLUSIONS: P329G-targeting CAR T cells combined with antigen-binding human IgG1 antibodies containing the P329G Fc mutation mediate pronounced in vitro and in vivo effector functions in different solid tumor models, warranting further clinical translation of this concept.


Assuntos
Neoplasias da Mama , Mesotelioma , Receptores de Antígenos Quiméricos , Animais , Anticorpos Antineoplásicos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imunoglobulina G/genética , Mesotelioma/tratamento farmacológico , Camundongos , Linfócitos T
2.
MAbs ; 12(1): 1840709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33136521

RESUMO

T-cell bispecific antibodies (TCBs) are a novel class of engineered immunoglobulins that unite monovalent binding to the T-cell receptor (TCR) CD3e chain and bivalent binding to tumor-associated antigens in order to recruit and activate T-cells for tumor cell killing. In vivo, T-cell activation is usually initiated via the interaction of the TCR with the peptide-HLA complex formed by the human leukocyte antigen (HLA) and peptides derived from intracellular proteins. TCR-like antibodies (TCRLs) that recognize pHLA-epitopes extend the target space of TCBs to peptides derived from intracellular proteins, such as those overexpressed during oncogenesis or created via mutations found in cancer. One challenge during lead identification of TCRL-TCBs is to identify TCRLs that specifically, and ideally exclusively, recognize the desired pHLA, but not unrelated pHLAs. In order to identify TCRLs suitable for TCRL-TCBs, large numbers of TCRLs have to be tested in the TCB format. Here, we propose a novel approach using chimeric antigen receptors (CARs) to facilitate the identification of highly selective TCRLs. In this new so-called TCRL-CAR-J approach, TCRL-candidates are transduced as CARs into Jurkat reporter-cells, and subsequently assessed for their specificity profile. This work demonstrates that the CAR-J reporter-cell assay can be applied to predict the profile of TCRL-TCBs without the need to produce each candidate in the final TCB format. It is therefore useful in streamlining the identification of TCRL-TCBs.


Assuntos
Anticorpos Biespecíficos/análise , Imunoensaio/métodos , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Células Jurkat , Receptores de Antígenos Quiméricos/imunologia
3.
Protein Eng Des Sel ; 32(5): 207-218, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31504896

RESUMO

Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.


Assuntos
Anticorpos Biespecíficos , Imunoglobulina G , Mutação de Sentido Incorreto , Receptores de Antígenos Quiméricos , Substituição de Aminoácidos , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Jurkat , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
4.
MAbs ; 11(4): 621-631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30892136

RESUMO

Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.


Assuntos
Linfócitos B/patologia , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Hematológicas/imunologia , Humanos , Ativação Linfocitária , Linfócitos T/transplante
5.
PLoS One ; 12(7): e0182039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750018

RESUMO

Pancreatic cancer (PC) remains one of the most challenging solid tumors to treat with a high unmet medical need as patients poorly respond to standard-of-care-therapies. Prominent desmoplastic reaction involving cancer-associated fibroblasts (CAFs) and the immune cells in the tumor microenvironment (TME) and their cross-talk play a significant role in tumor immune escape and progression. To identify the key cellular mechanisms induce an immunosuppressive tumor microenvironment, we established 3D co-culture model with pancreatic cancer cells, CAFs and monocytes. Using this model, we analyzed the influence of tumor cells and fibroblasts on monocytes and their immune suppressive phenotype. Phenotypic characterization of the monocytes after 3D co-culture with tumor/fibroblast spheroids was performed by analyzing the expression of defined cell surface markers and soluble factors. Functionality of these monocytes and their ability to influence T cell phenotype and proliferation was investigated. 3D co-culture of monocytes with pancreatic cancer cells and fibroblasts induced the production of immunosuppressive cytokines which are known to promote polarization of M2 like macrophages and myeloid derived suppressive cells (MDSCs). These co-culture spheroid polarized monocyte derived macrophages (MDMs) were poorly differentiated and had an M2 phenotype. The immunosuppressive function of these co-culture spheroids polarized MDMs was demonstrated by their ability to inhibit CD4+ and CD8+ T cell activation and proliferation in vitro, which we could partially reverse by 3D co-culture spheroid treatment with therapeutic molecules that are able to re-activated spheroid polarized MDMs or block immune suppressive factors such as Arginase-I.


Assuntos
Polaridade Celular , Técnicas de Cocultura/métodos , Fibroblastos/patologia , Macrófagos/patologia , Modelos Biológicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Quimiocinas/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária/imunologia , Monócitos/patologia , Esferoides Celulares , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA