Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 13(1): 4109, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840569

RESUMO

Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Animais , Linhagem Celular Tumoral , Citocinese/genética , Melanoma/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Tetraploidia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Nat Commun ; 13(1): 3732, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768444

RESUMO

Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development.


Assuntos
Melanoma , Nevo , Neoplasias Cutâneas , Animais , Melanócitos/metabolismo , Melanoma/patologia , Camundongos , Mutação , Nevo/genética , Nevo/metabolismo , Nevo/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/patologia
3.
Pigment Cell Melanoma Res ; 34(2): 280-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33283422

RESUMO

Melanoma arises from the melanocyte lineage and is the most aggressive and lethal form of skin cancer. There are several genetic, genomic, and cellular changes associated with melanoma initiation. Here, we discuss these alterations and the melanoma cells of origin in which they are proposed to promote melanomagenesis.


Assuntos
Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica , Melanócitos/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Humanos , Melanócitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
5.
Mol Cancer Res ; 13(2): 223-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25582703

RESUMO

UNLABELLED: All cancers contain an admixture of rapidly and slowly proliferating cancer cells. This proliferative heterogeneity complicates the diagnosis and treatment of patients with cancer because slow proliferators are hard to eradicate, can be difficult to detect, and may cause disease relapse sometimes years after apparently curative treatment. While clonal selection theory explains the presence and evolution of rapid proliferators within cancer cell populations, the circumstances and molecular details of how slow proliferators are produced is not well understood. Here, a ß1-integrin/FAK/mTORC2/AKT1-associated signaling pathway is discovered that can be triggered for rapidly proliferating cancer cells to undergo asymmetric cell division and produce slowly proliferating AKT1(low) daughter cells. In addition, evidence indicates that the proliferative output of this signaling cascade involves a proteasome-dependent degradation process mediated by the E3 ubiquitin ligase TTC3. These findings reveal that proliferative heterogeneity within cancer cell populations, in part, is produced through a targetable signaling mechanism, with potential implications for understanding cancer progression, dormancy, and therapeutic resistance. IMPLICATIONS: These findings provide a deeper understanding of the proliferative heterogeneity that exists in the tumor environment and highlight the importance of designing future therapies against multiple proliferative contexts. VISUAL OVERVIEW: A proposed mechanism for producing slowly proliferating cancer cells. http://mcr.aacrjournals.org/content/early/2015/01/09/1541-7786.MCR-14-0474/F1.large.jpg.


Assuntos
Divisão Celular Assimétrica , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Evolução Clonal , Heterogeneidade Genética , Células HCT116 , Humanos , Células MCF-7 , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microambiente Tumoral
6.
Proc Natl Acad Sci U S A ; 108(31): 12845-50, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757645

RESUMO

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.


Assuntos
Divisão Celular , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Modelos Biológicos , Estrutura Molecular , Neoplasias/genética , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Fase de Repouso do Ciclo Celular , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Reprod Fertil Dev ; 22(8): 1188-97, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20883644

RESUMO

Intrauterine growth restriction (IUGR) has life-long health implications, yet there is no effective prenatal treatment. Daily intra-amniotic administration of insulin-like growth factor (IGF)-1 to IUGR fetal sheep improves fetal gut maturation but suppresses hepatic igf1 gene expression. Fetal hepatic blood supply is regulated, in part, by shunting of oxygen- and nutrient-rich umbilical venous blood through the ductus venosus, with the left hepatic lobe predominantly supplied by umbilical venous blood and the right hepatic lobe predominantly supplied by the portal circulation. We hypothesised that: (1) once-weekly intra-amniotic IGF-1 treatment of IUGR would be effective in promoting gut maturation; and (2) IUGR and its treatment with intra-amniotic IGF-1 would differentially affect igf1 and igf1r mRNA expression in the two hepatic lobes. IUGR fetuses received 360 µg IGF-1 or saline intra-amniotically once weekly from 110 until 131 days gestation. Treatment of IUGR fetuses with IGF-1 reversed impaired gut growth. In unembolised, untreated control fetuses, igf1 mRNA levels were 19% lower in the right hepatic lobe than in the left; in IUGR fetuses, igf1 and igf1r mRNA levels were sixfold higher in the right lobe. IGF-1 treatment reduced igf1 and igf1r mRNA levels in both lobes compared with IUGR fetuses. Thus, weekly intra-amniotic IGF-1 treatment, a clinically feasible approach, reverses the impaired gut development seen in IUGR. Furthermore, igf1 and igf1r mRNA levels are differentially expressed in the two hepatic lobes and relative expression in the two lobes is altered by both IUGR and intra-amniotic IGF-1 treatment.


Assuntos
Retardo do Crescimento Fetal/tratamento farmacológico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/genética , Fígado/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Líquido Amniótico/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Peso Fetal/efeitos dos fármacos , Idade Gestacional , Injeções , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/embriologia , Fígado/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Receptor IGF Tipo 1/metabolismo , Ovinos , Embolização da Artéria Uterina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA